Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/33348
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMarin, Diego Bedin-
dc.creatorAlves, Marcelo de Carvalho-
dc.creatorPozza, Edson Ampélio-
dc.creatorBelan, Leônidas Leoni-
dc.creatorFreitas, Marcelo Loran de Oliveira-
dc.date.accessioned2019-03-29T17:13:38Z-
dc.date.available2019-03-29T17:13:38Z-
dc.date.issued2018-
dc.identifier.citationMARIN, D. B. et al. Multispectral radiometric monitoring of bacterial blight of coffee. Precision Agriculture, Dordrecht, p. 1-24, 2018. DOI: 10.1007/s11119-018-09623-9.pt_BR
dc.identifier.urihttps://link.springer.com/article/10.1007/s11119-018-09623-9pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/33348-
dc.description.abstractBacterial blight of coffee caused by Pseudomonas syringae pv. garcae shows great destructive potential in the main coffee producing regions in Brazil and worldwide. Remote sensing technologies can be used as an inexpensive and effective method to identify and monitor the disease. This study evaluated the potential of the Landsat 8 OLI/TIRS multispectral sensor for the spatial and temporal monitoring of coffee (Coffea arabica) affected by the bacterial blight. In a commercial coffee field in Minas Gerais State, Brazil, samples were collected from a grid of 85 points spaced from 35 to 50 m apart. Each sampling point consisted of five plants, being four plants distributed surrounding a central plant. The analyzes of the plant foliage, disease incidence, and disease severity were performed from January to December 2014 and correlated with 15 vegetation indices derived from a time series of 11 multispectral images. The brightness temperature of these images was calculated in order to indicate the area of the field more favorable to the occurrence of the bacterial blight of coffee. Vegetation indices were highly correlated with the incidence (r = 0.76) and severity (r = 0.52) of the disease. The brightness temperature aided in the mapping of areas with optimal temperature conditions for the occurrence of the disease. In general, the study demonstrated the potential of Landsat 8 OLI/TIRS images to identify and monitor crops affected by the bacterial blight of coffee.pt_BR
dc.languageen_USpt_BR
dc.publisherSpringerpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourcePrecision Agriculturept_BR
dc.subjectPseudomonas syringae pv. garcaept_BR
dc.subjectRemote sensingpt_BR
dc.subjectVegetation indicespt_BR
dc.subjectCoffee - Bacterial blightpt_BR
dc.subjectSensoriamento remotopt_BR
dc.subjectÍndices de vegetaçãopt_BR
dc.subjectCafé - Ferrugem bacterianapt_BR
dc.titleMultispectral radiometric monitoring of bacterial blight of coffeept_BR
dc.typeArtigopt_BR
Aparece nas coleções:DFP - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.

Ferramentas do administrador