Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/33275
Registro completo de metadados
Campo DCValorIdioma
dc.creatorRosa, Renata L.-
dc.creatorSchwartz, Gisele M.-
dc.creatorRuggiero, Wilson V.-
dc.creatorRodríguez, Demóstenes Z.-
dc.date.accessioned2019-03-22T19:44:26Z-
dc.date.available2019-03-22T19:44:26Z-
dc.date.issued2018-
dc.identifier.citationROSA, R. L. et al. A knowledge-based recommendation system that includes sentiment analysis and deep learning. IEEE Transactions on Industrial Informatics, Piscataway, p. 1551-3203, 2018. DOI: 10.1109/TII.2018.2867174.pt_BR
dc.identifier.urihttps://ieeexplore.ieee.org/document/8445585pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/33275-
dc.description.abstractOnline social networks (OSN) provide relevant information on users' opinion about different themes. Thus, applications, such as monitoring and recommendation systems (RS) can collect and analyze this data. This paper presents a Knowledge-Based Recommendation System (KBRS), which includes an emotional health monitoring system to detect users with potential psychological disturbances, specifically, depression and stress. Depending on the monitoring results, the KBRS, based on ontologies and sentiment analysis, is activated to send happy, calm, relaxing or motivational messages to users with psychological disturbances. Also, the solution includes a mechanism to send warning messages to authorized persons, in case a depression disturbance is detected by the monitoring system. The detection of depressive and stressful sentence is performed through a Convolutional Neural Network (CNN) and a Bi-directional Long Short-Term Memory (BLSTM) - Recurrent Neural Networks (RNN); the proposed method reached an accuracy of 0.89 and 0.90 to detect depressed and stressed users, respectively. Experimental results show that the proposed KBRS reached a rating of 94% of very satisfied users, as opposed to 69% reached by a RS without the use of either a sentiment metric and ontologies. Additionally, subjective test results demonstrated that the proposed solution consumes low memory, processing and energy from current mobile electronic devices.pt_BR
dc.languageen_USpt_BR
dc.publisherIEEE Xplorept_BR
dc.rightsrestrictAccesspt_BR
dc.sourceIEEE Transactions on Industrial Informaticspt_BR
dc.subjectSentiment analysispt_BR
dc.subjectKnowledge personalization and customizationpt_BR
dc.subjectRecommendation systempt_BR
dc.subjectSocial networkspt_BR
dc.subjectDeep learningpt_BR
dc.subjectAnálise de sentimentospt_BR
dc.subjectPersonalização e personalização de conhecimentopt_BR
dc.subjectSistema de recomendaçãopt_BR
dc.subjectRedes sociaispt_BR
dc.titleA knowledge-based recommendation system that includes sentiment analysis and deep learningpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCA - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.