Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/32708
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSilva, Jose Cleydson F.-
dc.creatorCarvalho, Thales F. M.-
dc.creatorBasso, Marcos F.-
dc.creatorDeguchi, Michihito-
dc.creatorPereira, Welison A.-
dc.creatorR. Sobrinho, Roberto-
dc.creatorVidigal, Pedro M. P.-
dc.creatorBrustolini, Otávio J. B.-
dc.creatorSilva, Fabyano F.-
dc.creatorDal-Bianco, Maximiller-
dc.creatorFontes, Renildes L. F.-
dc.creatorSantos, Anésia A.-
dc.creatorZerbini, Francisco Murilo-
dc.creatorCerqueira, Fabio R.-
dc.creatorFontes, Elizabeth P. B.-
dc.date.accessioned2019-02-01T19:59:20Z-
dc.date.available2019-02-01T19:59:20Z-
dc.date.issued2017-05-05-
dc.identifier.citationSILVA, J. C. F. et al. Geminivirus data warehouse: a database enriched with machine learning approaches. BMC Bioinformatics, [S.l.], v. 18, p. 1-11, 2017.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/32708-
dc.description.abstractBackground: the Geminiviridae family encompasses a group of single-stranded DNA viruses with twinned and quasi-isometric virions, which infect a wide range of dicotyledonous and monocotyledonous plants and are responsible for significant economic losses worldwide. Geminiviruses are divided into nine genera, according to their insect vector, host range, genome organization, and phylogeny reconstruction. Using rolling-circle amplification approaches along with high-throughput sequencing technologies, thousands of full-length geminivirus and satellite genome sequences were amplified and have become available in public databases. As a consequence, many important challenges have emerged, namely, how to classify, store, and analyze massive datasets as well as how to extract information or new knowledge. Data mining approaches, mainly supported by machine learning (ML) techniques, are a natural means for high-throughput data analysis in the context of genomics, transcriptomics, proteomics, and metabolomics. Results: here, we describe the development of a data warehouse enriched with ML approaches, designated geminivirus.org. We implemented search modules, bioinformatics tools, and ML methods to retrieve high precision information, demarcate species, and create classifiers for genera and open reading frames (ORFs) of geminivirus genomes. Conclusions: the use of data mining techniques such as ETL (Extract, Transform, Load) to feed our database, as well as algorithms based on machine learning for knowledge extraction, allowed us to obtain a database with quality data and suitable tools for bioinformatics analysis. The Geminivirus Data Warehouse (geminivirus.org) offers a simple and user-friendly environment for information retrieval and knowledge discovery related to geminiviruses.pt_BR
dc.languageen_USpt_BR
dc.publisherSpringerpt_BR
dc.rightsAttribution 4.0 International*
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceBMC Bioinformaticspt_BR
dc.subjectMachine learningpt_BR
dc.subjectRandom forestpt_BR
dc.subjectKnowledge Discovery in Databases (KDD)pt_BR
dc.subjectData miningpt_BR
dc.subjectData warehousept_BR
dc.subjectGeminiviruspt_BR
dc.titleGeminivirus data warehouse: a database enriched with machine learning approachespt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DBI - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Geminivirus data warehouse - a database.pdf1,29 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons