Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/31439
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Oliveira, R. C. | - |
dc.creator | Molenberghs, G. | - |
dc.creator | Verbeke, G. | - |
dc.creator | Demétrio, C. G. B. | - |
dc.creator | Dias, C. T. S. | - |
dc.date.accessioned | 2018-10-25T12:20:27Z | - |
dc.date.available | 2018-10-25T12:20:27Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | OLIVEIRA, R. C. et al. Negative variance components for non-negative hierarchical data with correlation, over-, and/or underdispersion. Journal of Applied Statistics, [S.l.], v. 44, n. 6, 2017. | pt_BR |
dc.identifier.uri | https://www.tandfonline.com/doi/abs/10.1080/02664763.2016.1191624 | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/31439 | - |
dc.description.abstract | The concept of negative variance components in linear mixed-effects models, while confusing at first sight, has received considerable attention in the literature, for well over half a century, following the early work of Chernoff [7 H. Chernoff, On the distribution of the likelihood ratio, Ann. Math. Statist. 25 (1954), pp. 573–578. [Crossref], [Google Scholar] ] and Nelder [21 J.A. Nelder, The interpretation of negative components of variance, Biometrika 41 (1954), pp. 544–548. [Crossref], [Web of Science ®], [Google Scholar] ]. Broadly, negative variance components in linear mixed models are allowable if inferences are restricted to the implied marginal model. When a hierarchical view-point is adopted, in the sense that outcomes are specified conditionally upon random effects, the variance–covariance matrix of the random effects must be positive-definite (positive-semi-definite is also possible, but raises issues of degenerate distributions). Many contemporary software packages allow for this distinction. Less work has been done for generalized linear mixed models. Here, we study such models, with extension to allow for overdispersion, for non-negative outcomes (counts). Using a study of trichomes counts on tomato plants, it is illustrated how such negative variance components play a natural role in modeling both the correlation between repeated measures on the same experimental unit and over- or underdispersion. | pt_BR |
dc.language | en_US | pt_BR |
dc.publisher | Taylor and Francis Online | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | Journal of Applied Statistics | pt_BR |
dc.subject | Combined model | pt_BR |
dc.subject | Gamma distribution | pt_BR |
dc.subject | Generalized linear mixed model | pt_BR |
dc.subject | Overdispersion | pt_BR |
dc.subject | Poisson distribution | pt_BR |
dc.subject | Underdispersion | pt_BR |
dc.title | Negative variance components for non-negative hierarchical data with correlation, over-, and/or underdispersion | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DES - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.