Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/31433
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Konzen, Enéas Ricardo | - |
dc.creator | Peron, Raquel | - |
dc.creator | Ito, Marcio Akira | - |
dc.creator | Brondani , Gilvano Ebling | - |
dc.creator | Tsai, Siu Mui | - |
dc.date.accessioned | 2018-10-24T13:59:49Z | - |
dc.date.available | 2018-10-24T13:59:49Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | KONZEN, E. R. et al. Molecular identification of bamboo genera and species based on RAPD-RFLP markers. Silva Fennica, Helsinki, v. 51, n. 4, 2017. | pt_BR |
dc.identifier.uri | https://www.silvafennica.fi/pdf/article1691.pdf | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/31433 | - |
dc.description.abstract | Bamboo species have a very significant ecological and economic impact. Determining morphological and genetic differences among bamboo genera and species are crucial to explore desirable traits for breeding purposes. Several advances have been made in the taxonomy of bamboos by using molecular fingerprinting tools and next generation sequencing technologies. Nevertheless, classical molecular markers such as RAPD (Random Amplified Polymorphic DNA), AFLP (Amplified Fragment Length Polymorphism) and ISSR (Inter Simple Sequence Repeats) also provide an accurate discrimination among genera and species. Moreover, the RAPD-RFLP (Random Amplified Polymorphic DNA, Restriction Fragment Length Polymorphism) method, in which amplification products from RAPD are digested with restriction enzymes, is a reliable, fast and cost-effective method for fingerprinting. RAPD-RFLP has been scarcely used in the literature and no report regarding bamboo taxonomy is available with this method. Here we explored the molecular (RAPD, RAPD-RFLP) variation among genera (Bambusa, Dendrocalamus, Guadua and Phyllostachys) and species of bamboo cultivated in Brazil. Both molecular markers allowed clear distinction among the genera studied. Moreover, high cophenetic correlation values in UPGMA clusters indicated their potential for discriminating bamboo species. The digestion of RAPD products (RFLP) resulted in high number of polymorphic bands and produced very characteristic profiles for each genus with three enzyme combinations (HindIII/HaeIII, HinfI/RsaI, and single digestion with MspI). We recommend RAPD-RFLP as a reproducible and informative method for screening differences among genera, species and varieties of bamboos. Providing a cost-effective and accurate method for species identification and characterization is straightforward for bamboo conservation, management and breeding. | pt_BR |
dc.language | en_US | pt_BR |
dc.publisher | Finnish Society of Forest Science | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | Silva Fennica | pt_BR |
dc.subject | Molecular screening | pt_BR |
dc.subject | Molecular markers | pt_BR |
dc.subject | Restriction enzymes | pt_BR |
dc.subject | Genetic divergence | pt_BR |
dc.subject | Dendrocalamus | pt_BR |
dc.subject | Bambusa | pt_BR |
dc.title | Molecular identification of bamboo genera and species based on RAPD-RFLP markers | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DCF - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.