Please use this identifier to cite or link to this item:
http://repositorio.ufla.br/jspui/handle/1/29792
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Pereira, Leandro da Silva | - |
dc.creator | Chaves, Lucas Monteiro | - |
dc.creator | Souza, Devanil Jaques de | - |
dc.date.accessioned | 2018-07-27T12:14:54Z | - |
dc.date.available | 2018-07-27T12:14:54Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | PEREIRA, L. da S.; CHAVES, L. M.; SOUZA, D. J. de. An intuitive geometric approach to the Gauss Markov theorem. The American Statistician, [S. l.], v. 71, n. 1, p. 67-70, 2017. | pt_BR |
dc.identifier.uri | https://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1209127#.W09lFtVKgdU | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/29792 | - |
dc.description.abstract | Algebraic proofs of Gauss–Markov theorem are very disappointing from an intuitive point of view. An alternative is to use geometry that emphasizes the essential statistical ideas behind the result. This article presents a truly geometrical intuitive approach to the theorem, based only in simple geometrical concepts, like linear subspaces and orthogonal projections. | pt_BR |
dc.language | en_US | pt_BR |
dc.publisher | American Statistical Association | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | The American Statistician | pt_BR |
dc.subject | Dispersion cloud of points | pt_BR |
dc.subject | Gauss–Markov estimator | pt_BR |
dc.subject | Orthogonal projection | pt_BR |
dc.subject | Nuvem de dispersão de pontos | pt_BR |
dc.subject | Estimador de Gauss-Markov | pt_BR |
dc.subject | Projeção ortogonal | pt_BR |
dc.title | An intuitive geometric approach to the Gauss Markov theorem | pt_BR |
dc.type | Artigo | pt_BR |
Appears in Collections: | DEX - Artigos publicados em periódicos |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.