Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/29792
Full metadata record
DC FieldValueLanguage
dc.creatorPereira, Leandro da Silva-
dc.creatorChaves, Lucas Monteiro-
dc.creatorSouza, Devanil Jaques de-
dc.date.accessioned2018-07-27T12:14:54Z-
dc.date.available2018-07-27T12:14:54Z-
dc.date.issued2017-
dc.identifier.citationPEREIRA, L. da S.; CHAVES, L. M.; SOUZA, D. J. de. An intuitive geometric approach to the Gauss Markov theorem. The American Statistician, [S. l.], v. 71, n. 1, p. 67-70, 2017.pt_BR
dc.identifier.urihttps://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1209127#.W09lFtVKgdUpt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/29792-
dc.description.abstractAlgebraic proofs of Gauss–Markov theorem are very disappointing from an intuitive point of view. An alternative is to use geometry that emphasizes the essential statistical ideas behind the result. This article presents a truly geometrical intuitive approach to the theorem, based only in simple geometrical concepts, like linear subspaces and orthogonal projections.pt_BR
dc.languageen_USpt_BR
dc.publisherAmerican Statistical Associationpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceThe American Statisticianpt_BR
dc.subjectDispersion cloud of pointspt_BR
dc.subjectGauss–Markov estimatorpt_BR
dc.subjectOrthogonal projectionpt_BR
dc.subjectNuvem de dispersão de pontospt_BR
dc.subjectEstimador de Gauss-Markovpt_BR
dc.subjectProjeção ortogonalpt_BR
dc.titleAn intuitive geometric approach to the Gauss Markov theorempt_BR
dc.typeArtigopt_BR
Appears in Collections:DEX - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.