Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/29744
Full metadata record
DC FieldValueLanguage
dc.creatorLima Junior, Paulo Oliveira-
dc.creatorCastro Junior, Luiz Gonzaga de-
dc.creatorZambalde, Andre Luiz-
dc.date.accessioned2018-07-25T13:42:25Z-
dc.date.available2018-07-25T13:42:25Z-
dc.identifier.citationLIMA JUNIOR, P. O.; CASTRO JUNIOR, L. G. de; ZAMBALDE, A. L. Applying textmining to classify news about supply and demand in the coffee market. IEEE Latin America Transactions, [S.l.], v. 14, n. 12, Dec. 2016.pt_BR
dc.identifier.urihttps://ieeexplore.ieee.org/document/7817009/pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/29744-
dc.description.abstractThis work verifies the feasibility of text classification using supervised machine learning method to promote the web news monitoring on factors that impact supply and demand for the coffee market. To this end, a device was develop that enables the empirical evaluation of the Naive Bayes method to sort news collected from the web according to the categories: positive or negative to supply and to demand. The tests show the feasibility of Naive Bayes classifier to identify factors that affect supply and demand in coffee market.pt_BR
dc.languageen_USpt_BR
dc.publisherIEEE Xplorept_BR
dc.rightsrestrictAccesspt_BR
dc.sourceIEEE Latin America Transactionspt_BR
dc.subjectCoffee marketpt_BR
dc.subjectMachine learningpt_BR
dc.subjectTextminingpt_BR
dc.titleApplying textmining to classify news about supply and demand in the coffee marketpt_BR
dc.typeArtigopt_BR
Appears in Collections:DAE - Artigos publicados em periódicos
DCC - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools