Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/28467
Registro completo de metadados
Campo DCValorIdioma
dc.creatorAlves, Marcelo de C.-
dc.creatorCarvalho, Luiz G. de-
dc.creatorPozza, Edson Ampélio-
dc.creatorAlves, Luciana Sanches-
dc.date.accessioned2018-01-26T12:05:06Z-
dc.date.available2018-01-26T12:05:06Z-
dc.date.issued2010-02-
dc.identifier.citationALVES, M. de C. et al. A soft computing approach for epidemiological studies of coffee and soybean rusts. International Journal of Digital Content Technology and its Applications, [S.l.], v. 4, n. 1, Feb. 2010.pt_BR
dc.identifier.urihttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.9907&rep=rep1&type=pdfpt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/28467-
dc.description.abstractSolutions of complex problems require intelligent systems that combine knowledge, techniques and methodologies, from different sources, considering environmental changes, for decision support improvement. Thus, it became necessary to apply robust methodologies to characterize the interaction among climatic variables related to epidemic progress. The objective of the present work was to evaluate the effects of temperature and leaf wetness in asian soybean (Glycine max L.) rust (Phakopsora pachyrhizi H. Sydow & P. Sydow) intensity in Suprema cultivar and coffee (Coffea arabica L.) rust (Hemileia vastatrix Berkeley & Broome) intensity in Mundo Novo and Catuaí cultivars using linear regression (LR), nonlinear regression (NLR), fuzzy logic systems (LFS) and neuro-fuzzy systems (NFS). Comparing observed and estimated values for both diseases, NFS increased the precision and accuracy of the estimated values, following in decrease order by LFS, NLR and LR. NFS enabled to explain 85% and 99% of asian soybean rust and coffee rust monocyclic process, respectively.pt_BR
dc.languageen_USpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceInternational Journal of Digital Content Technology and its Applicationspt_BR
dc.subjectArtificial intelligencept_BR
dc.subjectPlant disease epidemiologypt_BR
dc.subjectLinear and nonlinear statisticspt_BR
dc.titleA soft computing approach for epidemiological studies of coffee and soybean rustspt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEG - Artigos publicados em periódicos
DFP - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.

Ferramentas do administrador