Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/15582
Registro completo de metadados
Campo DCValorIdioma
dc.creatorRodriguez, Demostenes Zegarra-
dc.creatorRosa, Renata Lopes-
dc.creatorBressan, Graça-
dc.date.accessioned2017-10-24T12:41:32Z-
dc.date.available2017-10-24T12:41:32Z-
dc.date.issued2013-
dc.identifier.citationRODRIGUEZ, D. Z.; ROSA, R. L.; BRESSAN, G. Intelligent learning techniques applied to quality level in voice over IP communications. International Journal on Advances in Internet Technology, [S.l.], v. 6, n. 3/4, 2013.pt_BR
dc.identifier.urihttp://www.iariajournals.org/internet_technology/inttech_v6_n34_2013_paged.pdfpt_BR
dc.identifier.urirepositorio.ufla.br/jspui/handle/1/15582-
dc.description.abstractThis paper presents a method for determining the quality of a Voice over IP communication using machine learning techniques. The solution proposed uses historical values of network parameters and communication quality in order to train the different learning algorithms. After that, these algorithms are able to find the quality of the Voice over IP communication based on network parameters of a specific period of time. Intelligent and other machine learning algorithms take as input a baseline file that contains some values of network parameters and voice coding, associating an index quality for each scenario according to ITU-T Recommendation G.107. The tests were performed in an emulated network environment, totally isolated and controlled with real traffic of voice and realistic IP network parameters. The quality ratings obtained for the learning algorithms in all the scenarios were corroborated with the results of the algorithm of ITU-T Recommendation P.862. The results show the reliability of the four learning algorithms used on the tests: Decision Trees (J.48), Neural Networks (Multilayer Perceptron), Sequential Minimal Optimization (SMO) and Bayesian Networks (Naive). The highest value of reliability for determining the quality of the Voice over IP communications was 0.98 with the use of the Decision Trees Algorithm. These results demonstrate the validity of the method proposed.pt_BR
dc.languageen_USpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceInternational Journal on Advances in Internet Technologypt_BR
dc.subjectVoice over IP (VoIP)pt_BR
dc.subjectMachine Learningpt_BR
dc.subjectMean Opinion Score (MOS)pt_BR
dc.subjectE-Modelpt_BR
dc.subjectPerceptual Evaluation of Speech Quality (PESQ)pt_BR
dc.titleIntelligent learning techniques applied to quality level in voice over IP communicationspt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCC - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.

Ferramentas do administrador