Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/13967
Título: Bayesian inferences for the Birnbaum-Saunders Special-Case distribution
Título(s) alternativo(s): Inferência bayesiana na distribuição Birnbaum-Saunders Caso-Especial
Autores: Nakamura, Luiz Ricardo
Leandro, Roseli Aparecida
Villegas, Cristian
Palavras-chave: Generalized Birnbaum-Saunders distributions
Markov chain Monte Carlo
Metropolis-Hastings algorithm
Random number generator
Distribuições Birnbaum-Saunders generalizadas
Monte Carlo via cadeias de Markov
Algoritmo Metropolis-Hastings
Gerador de números aleatórios
Data do documento: 1-Ago-2017
Editor: Universidade Federal de Lavras
Citação: NAKAMURA, L. R.; LEANDRO, R. A.; VILLEGAS, C. Bayesian inferences for the Birnbaum-Saunders Special-Case distribution. Revista Brasileira de Biometria, Lavras, v. 34, n. 2, p. 365-378, jun. 2016.
Resumo: In this paper, we discuss the estimation of the Birnbaum-Saunders Special-Case (BS-SC) distribution through the Bayesian approach considering its parameters independents, assuming gamma priors for both of them. As the full posterior conditionals do not have closed forms we use the Metropolis-Hastings algorithm to generate samples from the joint posterior distribution. We present a simulation study proposing the Markov chain Monte Carlo (MCMC) method as a random number generator, considering the cases where the BS-SC distribution has symmetric and asymmetric shapes. An application related to ozone concentration is presented in this paper using the described methodology.
URI: http://repositorio.ufla.br/jspui/handle/1/13967
Aparece nas coleções:Revista Brasileira de Biometria

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Bayesian inferences for the Birnbaum-Saunders Special-Case distribution.pdf312,05 kBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons