Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/13954
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorVendruscolo, Diogo Guido Streck-
dc.contributor.authorDrescher, Ronaldo-
dc.contributor.authorSouza, Hudson Santos-
dc.contributor.authorMoura, Jhonny Pinto Vieira Mendes-
dc.contributor.authorMamoré, Fernanda Meyer Dotto-
dc.contributor.authorSiqueira, Tiago Altobelle da Silva-
dc.creatorVendruscolo, Diogo Guido Streck-
dc.creatorDrescher, Ronaldo-
dc.creatorSouza, Hudson Santos-
dc.creatorMoura, Jhonny Pinto Vieira Mendes-
dc.creatorMamoré, Fernanda Meyer Dotto-
dc.creatorSiqueira, Tiago Altobelle da Silva-
dc.date2015-12-29-
dc.date.accessioned2017-08-01T20:09:51Z-
dc.date.available2017-08-01T20:09:51Z-
dc.date.issued2017-08-01-
dc.identifier.citationVENDRUSCOLO, D. G. Estimativa da altura de eucalipto por meio deregressão não linear e redes neurais artificiais. Revista Brasileira de Biometria, Lavras, v. 33, n. 4, p. 556-569, dez. 2015.-
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/13954-
dc.description.abstractNeste trabalho foi avaliada a modelagem por regressão não linear e por redes neurais artificiais para a estimativa da altura de árvores de eucaliptos. Os povoamentos estão localizados no município de Itiquira, MT. Os dados foram obtidos de 23 parcelas medidas aos quatro anos. O banco de dados foi dividido em dois conjuntos, um para o ajuste do modelo de regressão e treinamento das redes (70%) e o outro para validação da regressão e validação das redes treinadas (30%). O modelo de regressão não linear empregado foi o de Gompertz e as redes do tipo perceptron de múltiplas camadas (MLP). A avaliação da precisão das estimativas foi pelo coeficiente de correlação múltipla entre as alturas observadas e estimadas, raiz quadrada do erro médio em percentagem e a análises gráficas. Ambas as técnicas avaliadas são eficientes para a predição da altura de árvores. No entanto, as redes neurais apresentaram critérios estatísticos levemente superiores em relação à regressão.-
dc.description.abstractABSTRACT: In this work was evaluated the nonlinear regression modeling and artificial neural networks to estimate the eucalyptus trees tall. The stands are located in Itiquira, MT. Data were obtained from 23 parcels measured at four years old. The database was divided into two sets, one for the adjustment of regression models and training the networks (70%) and the other to validate the regression and validating the trained networks (30%). The nonlinear regression model was used the Gompertz and the networks of the multilayer perceptron (MLP). The evaluation of the estimates accuracy was by the multiple correlation coefficient between the observed and estimated heights, square root of the average error in percentage and graphical analysis. Both evaluated techniques are effective for predicting the height of trees. However, neural networks statistical criteria showed slightly higher relative to the regression.-
dc.formatapplication/pdf-
dc.languagepor-
dc.publisherUniversidade Federal de Lavras-
dc.relationhttp://www.biometria.ufla.br/index.php/BBJ/article/view/33/21-
dc.rightsCopyright (c) 2015 Diogo Guido Streck VENDRUSCOLO, Ronaldo DRESCHER, Hudson Santos SOUZA, Jhonny Pinto Vieira Mendes MOURA, Fernanda Meyer Dotto MAMORÉ, Tiago Altobelle da Silva SIQUEIRA-
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceREVISTA BRASILEIRA DE BIOMETRIA; Vol 33 No 4 (2015); 556-569-
dc.source1983-0823-
dc.subjectPovoamento florestal-
dc.subjectInventário florestal-
dc.subjectPredição-
dc.subjectAfforestation-
dc.subjectForest inventory-
dc.subjectPrediction-
dc.titleEstimativa da altura de eucalipto por meio deregressão não linear e redes neurais artificiais-
dc.title.alternativeEstimation of eucalyptus height by means of nonlinear regression and artificial neural networks-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.typePeer-reviewed Article-
Aparece nas coleções:Revista Brasileira de Biometria

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Estimativa da altura de eucalipto por meio deregressão não linear e redes neurais artificiais.pdf1,66 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons