Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/13413
Registro completo de metadados
Campo DCValorIdioma
dc.creatorPereira, Érica Aparecida-
dc.date.accessioned2017-07-25T16:59:39Z-
dc.date.available2017-07-25T16:59:39Z-
dc.date.issued2017-07-21-
dc.date.submitted2017-04-24-
dc.identifier.citationPEREIRA, E. A. Proposição de testes de normalidade multivariada baseados em distâncias robustas. 2017. 105 p. Dissertação (Mestrado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2017.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/13413-
dc.description.abstractMultivariate normality is one of the most important assumptions for the realization of many inferential methods. The non-verification of this assumption can influence the reliability of the results. There are many tests in the specialized literature to verify normality. In the case of multivariate normality, the tests, in general, are based on correlation coefficients, asymmetry and kurtosis coefficients and distances. Despite the large number of tests, there is no test in the literature that is uniformly more powerful in all evaluated situations. The tests, in general, presents some restrictions, both in relation to size and to dimension. The presence of outliers in the data can result in bad parameter estimation and even distortions in the distribution fitting, making the tests fail. Therefore, the aim of this work is to propose and evaluate four outlier robust tests: multivariate normality test based on Mahalanobis distance with robust measures of the scale and location parameters (TNMD2RKS), multivariate normality test based on robust beta distance (TNMDbRKS), parametric bootstrap multivariate normality test based on robust distances (TNMD2RBoot) and the parametric bootstrap multivariate normality test based on robust beta distances (TNMDbRBoot). For the four tests it was used the robust scale and location estimators calculated via function CovOgk from the R software. Type I error rates and power of the tests were evaluated by comparing then to the parametric bootstrap multivariate normality test based on the correlation between the order statistics and the expected values and the Royston’s Shapiro-Wilk test, via Monte Carlo simulation. The tests TNMD2RKS, TNMD2RBoot and TNMDbRBoot were successfully proposed, obtaining excellent type I error rate control, especially in samples with the presence of outliers, in which the other tests did not perform well. In terms of power, the four tests performed well in large samples, however, they did not outperform the tests used as references.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Lavraspt_BR
dc.rightsacesso abertopt_BR
dc.subjectNormalidade multivariadapt_BR
dc.subjectEstimadores robustospt_BR
dc.subjectDistância de Mahalanobispt_BR
dc.subjectMétodos inferenciaispt_BR
dc.subjectMultivariate normalitypt_BR
dc.subjectOutlierspt_BR
dc.subjectMahalanobis distancept_BR
dc.subjectInferential methodspt_BR
dc.titleProposição de testes de normalidade multivariada baseados em distâncias robustaspt_BR
dc.title.alternativeMultivariate normality tests proposition based on robust distancespt_BR
dc.typedissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Estatística e Experimentação Agropecuáriapt_BR
dc.publisher.initialsUFLApt_BR
dc.publisher.countrybrasilpt_BR
dc.contributor.advisor1Ferreira, Daniel Furtado-
dc.contributor.referee1Ferreira, Daniel Furtado-
dc.contributor.referee2Bueno Filho, Júlio Sílvio de Sousa-
dc.contributor.referee3Pereira, Tiago Martins-
dc.description.resumoA normalidade multivariada é uma das pressuposições mais importante para a realização de muitos métodos inferenciais. A não verificação desta pressuposição pode influenciar na confiabilidade dos resultados. Existem muitos testes na literatura especializada para verificar a normalidade. No caso da normalidade multivariada, os testes, em geral, são baseados nos coeficientes de correlação, coeficiente de assimetria e curtose e distâncias. Apesar do grande número de testes, não existe na literatura um que seja uniformemente mais poderoso em todas as situações avaliadas. Os testes, em geral, apresentam alguma restrição, tanto em relação ao tamanho da amostra quanto à dimensão. Se os dados apresentam observações discrepantes, então podem ocorrer estimativas dos parâmetros precárias e até mesmo distorção no ajuste da distribuição, fazendo com que os testes falhem. Assim sendo, este trabalho tem como objetivo propor e avaliar quatro testes robustos quanto à presença de outliers: teste de normalidade multivariada baseado em distância de Mahalanobis com medidas robustas dos parâmetros de locação e escala (TNMD2RKS), teste de normalidade multivariada baseado em distância beta robusta (TNMDbRKS), teste de normalidade multivariada bootstrap paramétrico baseado em distâncias robustas (TNMD2RBoot) e o teste de normalidade multivariada bootstrap paramétrico baseado em distâncias beta robustas (TNMDbRBoot). Para os quatro testes foram utilizados os estimadores de locação e escala robustos calculados por meio da função CovOgk do So ftware R. Foram avaliadas as taxas de erro tipo I e o poder dos testes propostos comparando-os com o teste de normalidade multivariada baseado em bootstrap paramétrico na correlação entre as estatística de ordem e seus valores esperados e com o teste de Shapiro-Wilk de Royston, por meio de simulação Monte Carlo. Os testes TNMD2RKS, TNMD2RBoot e TNMDbRBoot foram propostos com sucesso, os quais obtiveram excelente controle da taxa de erro tipo I, principalmente em amostras com presença de outliers, em que os demais testes não obtiveram controle. Quanto ao poder, os quatro testes obtiveram bom desempenho em grandes amostras, porém não superaramo desempenho dos testes usados como referência.pt_BR
dc.publisher.departmentDepartamento de Ciências Exataspt_BR
dc.subject.cnpqEstatísticapt_BR
dc.creator.Latteshttp://lattes.cnpq.br/1271010934858021pt_BR
Aparece nas coleções:Estatística e Experimentação Agropecuária - Mestrado (Dissertações)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO_Proposição de testes de normalidade multivariada baseados em distâncias robustas.pdf1,5 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.