Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/13380
Registro completo de metadados
Campo DCValorIdioma
dc.creatorFilgueiras, Cleverson-
dc.creatorSilva, Edilberto Oliveira-
dc.creatorAndrade, Fabiano Manoel de-
dc.date.accessioned2017-07-17T18:51:47Z-
dc.date.available2017-07-17T18:51:47Z-
dc.date.issued2012-
dc.identifier.citationFILGUEIRAS, C.; SILVA, E. O.; ANDRADE, F. M. de. Nonrelativistic quantum dynamics on a cone with and without a constraining potential. Journal of Mathematical Physics, New York, v. 53, 2012.pt_BR
dc.identifier.urihttp://aip.scitation.org/doi/full/10.1063/1.4770048pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/13380-
dc.description.abstractIn this paper we investigate the bound state problem of nonrelativistic quantum particles on a conical surface. This kind of surface appears as a topological defect in ordinary semiconductors as well as in graphene sheets. Specifically, we compare and discuss the results stemming from two different approaches. In the first one, it is assumed that the charge carriers are bound to the surface by a constraining potential, while the second one is based on the Klein-Gordon type equation on surfaces, without the constraining potential. The main difference between both theories is the presence/absence of a potential which contains the mean curvature of a given surface. This fact changes the dependence of the bound states on the angular momentum l. Moreover, there are bound states that are absent in the Klein-Gordon theory, which instead appear in the Schrödinger one.pt_BR
dc.languageen_USpt_BR
dc.publisherAmerican Institute of Physicspt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceJournal of Mathematical Physicspt_BR
dc.titleNonrelativistic quantum dynamics on a cone with and without a constraining potentialpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DFI - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.