Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/13180
Título: | Prediction and simulation errors in parameter estimation for nonlinear systems |
Palavras-chave: | Prediction error Simulation error Parameter estimation Nonlinear system identification Non-convex optimisation Genetic algorithms Erro de previsão Erro de simulação Estimativa de parâmetros Identificação do sistema não-linear Otimização não convexa Algorítmos genéticos |
Data do documento: | Nov-2010 |
Editor: | Elsevier |
Citação: | AGUIRRE, L. A.; BARBOSA, B. H. G.; BRAGA, A. P. Prediction and simulation errors in parameter estimation for nonlinear systems. Mechanical Systems and Signal Processing, London, v. 24, n. 8, p. 2855–2867, Nov. 2010. |
Resumo: | This article compares the pros and cons of using prediction error and simulation error to define cost functions for parameter estimation in the context of nonlinear system identification. To avoid being influenced by estimators of the least squares family (e.g. prediction error methods), and in order to be able to solve non-convex optimisation problems (e.g. minimisation of some norm of the free-run simulation error), evolutionary algorithms were used. Simulated examples which include polynomial, rational and neural network models are discussed. Our results—obtained using different model classes—show that, in general the use of simulation error is preferable to prediction error. An interesting exception to this rule seems to be the equation error case when the model structure includes the true model. In the case of error-in-variables, although parameter estimation is biased in both cases, the algorithm based on simulation error is more robust. |
URI: | http://www.sciencedirect.com/science/article/pii/S0888327010001469 http://repositorio.ufla.br/jspui/handle/1/13180 |
Aparece nas coleções: | DEG - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.