Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/13065
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSantana, Márcio Wladimir-
dc.date.accessioned2017-05-29T18:27:33Z-
dc.date.available2017-05-29T18:27:33Z-
dc.date.issued2017-05-24-
dc.date.submitted2017-04-17-
dc.identifier.citationSANTANA, M. W. Agrupamento incremental de fluxo de dados para análise e monitoramento da qualidade de energia. 2017. 97 p. Dissertação (Mestrado em Engenharia de Controle e Automação)-Universidade Federal de Lavras, Lavras, 2017.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/13065-
dc.description.abstractThe concept of Power Quality is related to a set of changes that can occur in the electrical system. Power quality problems can be defined as problems that manifest in voltage and current signals or as variations in frequency. These result in flaws or bad consumer equipment operation. Such changes (disturbances) can occur in many parts of the power system – be it in the consumer electrical wiring or in the supply system, causing financial losses to both. Thus, real -time automatic detection and classification of disturbances, based on a large volume of data generated by monitoring equipment, is of fundamental importance. In this study, evolving intelligent models, that is, models equipped with incremental online learning algorithms capable of changing their parameters and structure according to new information that emerge from a data stream, are considered for pattern recognition and classification. In particular, an evolving Takagi-Sugeno (eTS) fuzzy model, and an evolving fuzzy set -based evolving model (FBeM) are taken into consideration. A Hodrick-Prescott filter combined with a Fast Fourier Transform technique and mean voltages are considered for pre -processing measured data and extracting variables that indicate the presence of disturbances. The models developed in this study have reached classification performance comparable to that of stateof-the-art models in the field of power quality. Detection and classification of disturbances such as voltage sag and swell, inter-harmonics, sub-harmonics, harmonics, short-term interruption, oscillatory transient, spikes and notching, possibly occurring simultaneously, were reached with an accuracy of about 85-95%. In addition, the evolving models adopted, combined with the above-mentioned pre-processing techniques, have shown to be superior in terms of computational memory and time.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Lavraspt_BR
dc.rightsacesso abertopt_BR
dc.subjectQualidade de energiapt_BR
dc.subjectDetecção e classificação de distúrbiospt_BR
dc.subjectAprendizado incremental on-linept_BR
dc.subjectSistemas Fuzzy evolutivospt_BR
dc.subjectPower qualitypt_BR
dc.subjectDetection and classification of disturbancespt_BR
dc.subjectIncremental online learningpt_BR
dc.subjectEvolving fuzzy systemspt_BR
dc.titleAgrupamento incremental de fluxo de dados para análise e monitoramento da qualidade de energiapt_BR
dc.title.alternativeIncremental clustering of data streams for power quality monitoring and analysispt_BR
dc.typeArtigopt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia de Sistemas e Automaçãopt_BR
dc.publisher.initialsUFLApt_BR
dc.publisher.countrybrasilpt_BR
dc.contributor.advisor1Leite, Daniel Furtado-
dc.contributor.advisor-co1Ferreira, Danton Diego-
dc.contributor.referee1Costa Júnior , Pyramo Pires da-
dc.contributor.referee2Gouvêa Júnior, Maury Meirelles-
dc.contributor.referee3Ferreira, Danton Diego-
dc.description.resumoO conceito de Qualidade da Energia está relacionado a um conjunto de alterações que podem ocorrer no sistema elétrico. Pode-se definir o problema de qualidade de energia como aqueles manifestados na tensão, corrente ou nas variações de frequência, que resultam em falha ou má operação em equipamentos de consumidores. Tais alterações (distúrbios) podem ocorrer em várias partes do sistema de energia, sejam nas instalações elétricas dos consumidores ou no sistema supridor da concessionária, causando prejuízos financeiros a ambas as partes. Por isso, é de fundamental importância a detecção em tempo real e classificação destes distúrbios de modo automático baseada em uma grande quantidade de dados gerados pelos equipamentos de monitoramento. Para reconhecimento e classificação de padrões, são considerados modelos inteligentes evolutivos, ou seja, modelos equipados com algoritmos de aprendizado incremental on-line capazes de alterar seus parâmetros e estrutura conforme novas informações surgem em um fluxo de dados. Em particular, é considerado um modelo evolutivo fuzzy do tipo Takagi-Sugeno (eTS) e a modelagem evolutiva baseada em conjuntos fuzzy (FBeM). Para pré-processamento dos dados mensurados e extração de variáveis indicadoras da presença de distúrbios, foi considerado o filtro Hodrick-Prescott, a técnica de transformada rápida de Fourier e o valor eficaz das tensões de fase. Os modelos desenvolvidos neste trabalho têm alcançado um desempenho comparável aos modelos estado da arte na área de qualidade de energia. Detecção e classificação de distúrbios como afundamento de tensão, elevação de tensão, inter-harmônicos, sub-harmônicos, harmônicos, interrupção curta, transitórios oscilatórios, spikes e notchings, ocorrendo possivelmente de forma simultânea, foram alcançadas com acurácia de, aproximadamente, 85-95%. Além disso, os modelos evolutivos adotados, combinados com as técnicas de pré-processamento mencionadas, são superiores com relação ao tempo computacional exigido.pt_BR
dc.publisher.departmentDepartamento de Engenhariapt_BR
dc.subject.cnpqAutomação Eletrônica de Processos Elétricos e Industriaispt_BR
dc.creator.Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4492762D6pt_BR
Aparece nas coleções:Engenharia de Sistemas e automação (Dissertações)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO_Agrupamento incremental de fluxo de dados para análise e monitoramento da qualidade de energia.pdf1,79 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.