Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/12481
Registro completo de metadados
Campo DCValorIdioma
dc.creatorEugênio Filho, Eleanderson Campos-
dc.date.accessioned2017-03-21T11:31:40Z-
dc.date.available2017-03-21T11:31:40Z-
dc.date.issued2017-03-20-
dc.date.submitted2017-01-16-
dc.identifier.citationEUGÊNIO FILHO, E. C. Um teste para dependência de valores extremos utilizando cópulas. 2017. 77 p. Dissertação (Mestrado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2017.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/12481-
dc.description.abstractIn the statistical modeling of risks, in the fields of finance and actuary, it is usual that the assumption of independent risks is adopted, or yet, to model the risks by a multivariate normal distribution. In practice, however, independence is exception and the multivariate normal distribution only captures linear dependence between risks, which, in reality, often exhibits complex dependence structures. Copulas are models that circumvents theses limitations, since they cover, besides linear dependence, nonlinear cases. Among several copula families, stands out extreme value copulas, which models variables/risks that show extreme value dependence, a particularly dangerous case for the risk analyst, once it represents large losses that could happen jointly. Therefore, it is important that extreme value dependence be detected in the process of risk assessment. Given that, using extreme value copulas, a new method was elaborated to test whether a bivariate dataset exhibits extreme value dependence. The test performed efficiently in most cases, keeping type I error rates close to the nominal level and being as powerful as the best tests.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Lavraspt_BR
dc.rightsacesso abertopt_BR
dc.subjectCópulaspt_BR
dc.subjectCópulas de valores extremospt_BR
dc.subjectDependência de valores extremospt_BR
dc.subjectMedidas de associaçãopt_BR
dc.subjectCopulaspt_BR
dc.subjectExtreme value copulaspt_BR
dc.subjectExtreme value dependencept_BR
dc.subjectMeasures of associationpt_BR
dc.titleUm teste para dependência de valores extremos utilizando cópulaspt_BR
dc.typedissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Estatística e Experimentação Agropecuáriapt_BR
dc.publisher.initialsUFLApt_BR
dc.publisher.countrybrasilpt_BR
dc.contributor.advisor1Souza, Devanil Jaques de-
dc.contributor.advisor-co1Chaves, Lucas Monteiro-
dc.contributor.referee1Souza, Devanil Jaques de-
dc.contributor.referee2Chaves, Lucas Monteiro-
dc.contributor.referee3Ferreira, Daniel Furtado-
dc.contributor.referee4Ferreira, Leandro-
dc.description.resumoNa modelagem estatística de riscos nas áreas de finanças e atuária, é comum que o pressuposto de riscos independentes seja adotado, ou ainda, que sejam modelados por uma distribuição normal multivariada. Na prática, no entanto, a independência entre os riscos é exceção, enquanto que a normal multivariada somente capta dependência linear entre os riscos, os quais, na realidade, costumam apresentar complexas estruturas de dependência. As cópulas são modelos que contornam essas limitações, uma vez que abarcam, além da dependência linear, os casos não-lineares. Dentre as várias famílias de cópulas, destacam-se as cópulas de valores extremos, que servem para modelar variáveis/riscos que apresentam dependência de valores extremos, um caso especialmente perigoso para o analista de riscos, uma vez que representa grandes perdas que podem ocorrer conjuntamente. Sendo assim, é importante que a dependência de valores extremos seja detectada no processo de avaliação de riscos. Sendo assim, utilizando cópulas de valores extremos, foi elaborada uma nova metodologia para testar se um conjunto de dados bivariados apresenta dependência de valores extremos. O desempenho do teste foi bastante satisfatório na maioria dos casos, mantendo as taxas de erro tipo I próximas do nível nominal e com poder comparável aos melhores testes.pt_BR
dc.publisher.departmentDepartamento de Ciências Exataspt_BR
dc.subject.cnpqEstatísticapt_BR
dc.creator.Latteshttp://lattes.cnpq.br/3725757951394070pt_BR
Aparece nas coleções:Estatística e Experimentação Agropecuária - Mestrado (Dissertações)

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.