Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/11627
Registro completo de metadados
Campo DCValorIdioma
dc.creatorFerraz, Patricia Ferreira Ponciano-
dc.creatorYanagi Junior, Tadayuki-
dc.creatorHernández Julio, Yamid Fabián-
dc.creatorCastro, Jaqueline de Oliveira-
dc.creatorGates, Richard Stephen-
dc.creatorReis, Gregory Murad-
dc.creatorCampos, Alessandro Torres-
dc.date.accessioned2016-08-16T15:04:14Z-
dc.date.available2016-08-16T15:04:14Z-
dc.date.issued2014-07-
dc.identifier.citationFERRAZ, P. F. P. et al. Predicting chick body mass by artificial intelligence-based models. Pesquisa Agropecuária Brasileira, Brasília, v. 49, n. 7, p. 559-568, jul. 2014.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/11627-
dc.description.abstractThe objective of this work was to develop, validate, and compare 190 artificial intelligence‑based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate‑controlled wind tunnels using 210  chicks. A  database containing 840 datasets (from 2 to 21‑day‑old chicks) – with the variables dry‑bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks – was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro‑fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision‑making, and they can be embedded in the heating control systems.pt_BR
dc.languageen_USpt_BR
dc.publisherEmbrapa Informação Tecnológicapt_BR
dc.rightsacesso abertopt_BR
dc.sourcePesquisa Agropecuária Brasileirapt_BR
dc.subjectAnimal welfarept_BR
dc.subjectArtificial neural networkpt_BR
dc.subjectBroilerpt_BR
dc.subjectModelingpt_BR
dc.subjectNeuro‑fuzzy networkpt_BR
dc.subjectThermal comfortpt_BR
dc.subjectBem estar animalpt_BR
dc.subjectRedes neurais artificiaispt_BR
dc.subjectFrangopt_BR
dc.subjectModelagempt_BR
dc.subjectRedes neurais difusaspt_BR
dc.subjectConforto térmicopt_BR
dc.titlePredicting chick body mass by artificial intelligence‑based modelspt_BR
dc.title.alternativePredição da massa corporal de pintinhos por meio de modelos baseados em inteligência artificialpt_BR
dc.typeArtigopt_BR
dc.description.resumo O objetivo deste trabalho foi desenvolver, validar e comparar 190 modelos baseados em inteligência artificial, para predizer a massa corporal de pintinhos de 2 a 21 dias de vida, submetidos a diferentes períodos e intensidades de estresse térmico. O experimento foi realizado com 210 pintinhos, em quatro túneis de vento climatizados. Um banco de dados com 840 conjuntos de dados (de aves de 2 a 21 dias) – com as variáveis temperatura de bulbo seco do ar, duração do estresse térmico (dias), idade das aves (dias) e a massa corporal diária dos pintinhos – foi utilizado para treinamento de rede, validação e testes dos modelos baseados em redes neurais artificiais (RNA) e redes “neuro-fuzzy” (RNF). As RNA mostraram-se mais precisas para se predizer a massa corporal de pintinhos de 2 a 21 dias de idade, submetidos às variáveis de entrada, e apresentaram R² de 0,9993 e erro‑padrão de 4,62 g. As RNA propiciam a simulação de diversos cenários, que podem auxiliar na tomada de decisões em relação ao manejo, e podem ser incorporadas nos sistemas de controle de aquecimento.pt_BR
Aparece nas coleções:DEG - Artigos publicados em periódicos
DEX - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Predicting chick body mass by artificial intelligence‑based models.pdf845,12 kBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons