Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/11518
Registro completo de metadados
Campo DCValorIdioma
dc.creatorEsmin, Ahmed Ali Abdalla-
dc.creatorCoelho, Rodrigo Amador-
dc.creatorMatwin, Stan-
dc.date.accessioned2016-08-03T17:43:38Z-
dc.date.available2016-08-03T17:43:38Z-
dc.date.issued2013-02-15-
dc.identifier.citationESMIN A. A. A.; COELHO, R. A.; MATWIN, S. A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artificial Intelligence Review, Dordrecht, v. 44, n. 1, p. 23–45, June 2015.pt_BR
dc.identifier.urihttp://link.springer.com/article/10.1007/s10462-013-9400-4pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/11518-
dc.description.abstractData clustering is one of the most popular techniques in data mining. It is a process of partitioning an unlabeled dataset into groups, where each group contains objects which are similar to each other with respect to a certain similarity measure and different from those of other groups. Clustering high-dimensional data is the cluster analysis of data which have anywhere from a few dozen to many thousands of dimensions. Such high-dimensional data spaces are often encountered in areas such as medicine, bioinformatics, biology, recommendation systems and the clustering of text documents. Many algorithms for large data sets have been proposed in the literature using different techniques. However, conventional algorithms have some shortcomings such as the slowness of their convergence and their sensitivity to initialization values. Particle Swarm Optimization (PSO) is a population-based globalized search algorithm that uses the principles of the social behavior of swarms. PSO produces better results in complicated and multi-peak problems. This paper presents a literature survey on the PSO algorithm and its variants to clustering high-dimensional data. An attempt is made to provide a guide for the researchers who are working in the area of PSO and high-dimensional data clustering.pt_BR
dc.languageen_USpt_BR
dc.publisherKluwer Academic Publishers; Springerpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceArtificial Intelligence Reviewpt_BR
dc.subjectData miningpt_BR
dc.subjectClusteringpt_BR
dc.subjectComputer algorithmspt_BR
dc.subjectParticle swarm optimization (PSO)pt_BR
dc.subjectMineração de dados (Computação)pt_BR
dc.subjectAgrupamentopt_BR
dc.subjectAlgorítmos computacionaispt_BR
dc.subjectOtimizaçãopt_BR
dc.subjectEnxame de partículaspt_BR
dc.titleA review on particle swarm optimization algorithm and its variants to clustering high-dimensional datapt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCC - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.

Ferramentas do administrador