Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/10807
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMelo, Janaína Marques de-
dc.date.accessioned2016-01-27T16:54:58Z-
dc.date.available2016-01-27T16:54:58Z-
dc.date.issued2016-01-27-
dc.date.submitted2016-01-21-
dc.identifier.citationMELO, J. M. e. Proposta de um teste exato para avaliar a normalidade multivariada baseado em uma transformação t de Student. 2016. 86 p. Dissertação (Mestrado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2016.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/10807-
dc.description.abstractThe normal distribution is one of the most important continuous probability distribution. This distribution describe several phenomena and has great hole in inferential statistics. It is noteworthy that the normality directly influences the quality and reliability of scientific research since violations of assumption can lead to incorrect results and conclusions. The same is expected for multivariate inferences. A simple manner, however subjective, to verify the univariate or multivariate normality is through quantile-quantile plots (Q-Q plots). Furthermore, the Q-Q plots are efficient tools for the visualization of outliers. A disadvantage of the classical Q-Q plot is that the quantiles are only asymptotically identically distributed, but they are not independent. This fact compromises the efficiency of the Q-Q plot or any test based on the use of the observed distance quantiles. The objective of this study is to propose an accurate test and validate its performance by Monte Carlo simulation and also provide a Q-Q plot to detect further evidence of violation of multivariate normality in $ p $ dimensions. This Q-Q plot originates from a characterization of the multivariate normal distribution made by Yang et al. (1996) based on the spherical distribution properties (Fang et al., 1990). The R program version 3.1.0 was used to build this Q-Q plot normality test and to perform the validation of its performance by Monte Carlo simulations. The Monte Carlo simulation results showed that the proposed test successful controls the type I error rates being accurate, but shows lower power than any other multivariate normality test.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Lavraspt_BR
dc.rightsacesso abertopt_BR
dc.subjectTeste de normalidade multivariadapt_BR
dc.subjectGráfico de quantil-quantilpt_BR
dc.subjectDistribuição t de Studentpt_BR
dc.subjectMultivariate normality testpt_BR
dc.subjectQuantile-quantile graphpt_BR
dc.subjectt-Student distributionpt_BR
dc.titleProposta de um teste exato para avaliar a normalidade multivariada baseado em uma transformação t de Studentpt_BR
dc.title.alternativeProposal for a normal test based on an exact multivariate t student transformationpt_BR
dc.typedissertaçãopt_BR
dc.publisher.programPrograma de Pós-graduação em Estatística e Experimentação Agropecuáriapt_BR
dc.publisher.initialsUFLApt_BR
dc.publisher.countrybrasilpt_BR
dc.contributor.advisor1Ferreira, Daniel Furtado-
dc.contributor.referee1Freitas, Silvia Maria de-
dc.contributor.referee2Oliveira, Izabela Regina Cardoso de-
dc.contributor.referee3Bueno Filho, Júlio Silvio de Sousa-
dc.description.resumoA distribuição normal é uma das mais importantes distribuições contínuas da Estatística. Além dessa distribuição descrever uma série de fenômenos, ela é de grande uso na estatística inferencial. Vale ressaltar que o teste de normalidade influencia diretamente na qualidade e confiabilidade das pesquisas científicas, uma vez que a distribuição normal faz parte da suposição de diversos procedimentos estatísticos, e a não checagem dessa pressuposição pode conduzir a resultados e conclusões incorretas. Na multivariada, isso não é diferente. Uma maneira simples, porém subjetiva, de se verificar a normalidade de uma distribuição tanto univariada quanto multivariada é por meio de gráficos, como o gráfico quantil-quantil (Q-Q plot). Além disso, os Q-Q plots são ferramentas viáveis para a visualização de valores discrepantes. Uma desvantagem do Q-Q plot clássico é que os quantis observados não são independentes sendo apenas identicamente distribuídos, tornando-se independentes apenas assintoticamente. Isso compromete o Q-Q plot ou qualquer teste que tenha o mesmo princípio básico. O objetivo do presente trabalho é propor um teste exato baseado na distribuição t de Student, validar o seu desempenho por simulação Monte Carlo e desenvolver um Q-Q plot para fornecer provas suplementares para detectar uma possível normalidade multivariada na análise de dados em $p$ dimensões. Este Q-Q plot provêm de uma caracterização da distribuição normal multivariada feita por Yang et al. (1996) baseada em uma das propriedades da distribuição esférica (FANG et al., 1990). Foi utilizado o programa R versão 3.1.0 de programação livre, e fonte aberta, para auxiliar na construção desse gráfico, bem como nas simulações de validação do teste. O desempenho, validado por simulação Monte Carlo, mostrou que o teste proposto teve sucesso no controle das taxas de erro tipo I, sendo um teste exato, porém foi pouco poderoso.pt_BR
dc.publisher.departmentDepartamento de Ciências Exataspt_BR
dc.subject.cnpqEstatísticapt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6159801576076867pt_BR
Aparece nas coleções:Estatística e Experimentação Agropecuária - Mestrado (Dissertações)



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.