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RESUMO

O cultivo de café é um elemento importante na economia brasileira, produzindo receitas de
exportação, empregos e movimentando a economia local. O Brasil é o maior produtor e expor-
tador de café do mundo e o seu plantio é um elemento importante na nossa identidade cultural.
Conhecer com precisão as regiões de cultivo de café permite avaliar melhor o balanço entre a
oferta e demanda do produto, facilita monitorar os problemas associados ao cultivo, auxiliando
na tomada de medidas preventivas ou determinação de políticas públicas para direcionar essa
atividade. O mapeamento, feito de forma tão automática quanto possível, ajudaria a manter
dados atualizados sobre as regiões de cultivo, em grandes extensões de terra. Por outro lado,
o mapeamento automático desta cultura enfrenta diversos desafios relacionados com a varie-
dade de características de produção de café em diferentes locais. As variações vão desde o
uso de diferentes espécies e variedades de plantas, como diferenças visuais relativas à idade
das plantas, cultivo em consórcio com outras culturas e técnicas de cultivo e manejo, como o
plantio sombreado. Este trabalho investiga o mapeamento de cultivo de café, na forma de mo-
nocultura exposta, no município de Lavras, MG, usando imagens do satélite Sentinel-2 (MSI)
e o algoritmo de classificação Random Forest. O Random Forest é um algoritmo de apren-
dizado de máquina e portanto “aprende” a fazer a classificação por meio de exemplos, o que
requer uma pequena classificação manual a fim de gerar exemplos que pretendam abranger os
vários casos possíveis de classificação. Produzir uma amostragem adequada à criação de uma
classificação cria problemas práticos diversos, cujo impacto na classificação ainda precisa ser
melhor estudado. Neste trabalho, observamos que alguns aspectos práticos tem efeitos bem
mais significativos que outros. Foram realizados testes de classificação, mostrando que a esco-
lha de exemplos de classificação acaba produzindo efeitos mais significativos do que a escolha
das bandas eletromagnéticas amostradas pelo satélite. A inclusão de ruído (sombras, falhas no
plantio, carreadores) nas amostras de plantio não impediu a classificação adequada. Foi também
desenvolvida uma técnica para eliminar o ruído comum nas classificações por pixel, produzindo
áreas mais contínuas de classificação, que são mais apropriadas para demarcação geométrica.
A análise de acurácia se concentrou na classificação de uma região distinta do treinamento,
uma característica pouco comum em trabalhos anteriores, mas que é importante para a viabi-
lidade prática da classificação, uma vez que não é viável produzir uma classificação manual
numa grande região a fim de fazer o treinamento do classificador. Foram obtidos resultados
de classificação com acurácia de até 94,4%, com Kappa de 0,761, para classificação em região
distinta da de treinamento. O sistema de classificação foi todo implementado com software li-
vre, usando dados de satélite que estão publicamente disponíveis, usando a linguagem R e suas
bibliotecas, incluindo uma implementação de Random Forest da biblioteca ranger.

Palavras-chave: Mapeamento. Café. Uso da Terra. Sensoriamento Remoto. Sentinel-2.
Random Forest. Coerência Espacial.



ABSTRACT

Coffee cultivation is an important element in the Brazilian economy, producing export revenues,
jobs and driving the local economy. Brazil is the largest producer and exporter of coffee in the
world and its cultivation is an important element in our cultural identity. Knowing precise loca-
tions of coffee growing allows a better assessment of the balance between supply and demand
for the product, makes it easier to monitor problems associated with cultivation, helping to take
preventive measures or determine public policies to guide this activity. Mapping, done as au-
tomatically as possible, would help keep up-to-date data on growing regions across large tracts
of land. On the other hand, automatic mapping of this particular crop faces several challenges
related to the variety of coffee growth systems in different locations. Variations range from the
use of different species and varieties of plants, such as visual differences related to the age of
the plants, intercropping with other crops, and cultivation and management techniques. This
work investigates the mapping of coffee crops, in the form of sun exposed monoculture, in the
municipality of Lavras, MG, using images from the Sentinel-2 MSI satellite and the Random
Forest classification algorithm. Random Forest is a machine learning algorithm and therefore
“learns” to classify through examples, which requires a little manual classification in order to
generate examples that intend to cover the various possible cases of classification. Producing
adequate sampling to create a classification creates several practical problems, whose impact
on classification still needs to be better studied. In this work, we observed that some practical
aspects have much more significant effects than others. Classification tests were carried out,
showing that the choice of classification examples ends up producing more significant effects
than the choice of electromagnetic bands sampled by the satellite. The inclusion of noise (shad-
ows, planting failures, road tracks) in the crop samples did not lead to a bad classification. A
technique was also developed to eliminate common noise in pixel-based classifications, pro-
ducing more continuous areas of classification, more suitable for geometric demarcation. The
accuracy analysis focused on the classification on an area distinct from the training region, an
uncommon feature in previous works, but which is important for the practical feasibility of the
classification, since it is not feasible to produce a manual classification in a large region to be
used. in order to train the classifier. Classification results were obtained with accuracy of up to
94.4%, with Kappa of 0.761, for classification in a region other than the training one. The clas-
sification system was all implemented with free software, using satellite data that are publicly
available, using the R language and its libraries, including a Random Forest implementation of
the ranger library.

Keywords: Crop Mapping. Coffee. Land Use. Remote Sensing. Sentinel-2. Random Forest.
Spatial Coherence.
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PART ONE

This work is presented in two parts. The first contains a general introduction, the work

goals, the hypothesis that motivates this research, the original contributions produced, a quick

review of previous work on coffee mapping and finally the conclusions gathered from it. The

second part is an scientific article for peer-review magazines for a quick and broader divulgation;

it presents in detail the data set, methods and results obtained. The article was reformatted

according to UFLA’s style standards for thesis documents. Bibliographical references from

both parts are at the end, also following UFLA’s standards. A R script capable of mapping

coffee is included as an appendix for reproducibility purposes.

1 INTRODUCTION

Coffee is an economically important commodity in Brazil, with significant influence

on the economy and the occupation of Brazilian land. It is important to know the dynamics

of land use for coffee cultivation in order to learn more about the productivity of the sector

and how the sector influences different events of land use such as deforestation. Knowing

the impact of coffee cultivation involves knowing the areas and locations of this cultivation,

which is a complex task in such a large territory. Land use mapping, using satellite images, can

significantly contribute to this task, but there are still many difficulties to be overcome in this

area. As technologies for automatic mapping evolve, precise and up-to-date data about coffee

cultivation may help develop public policies that help economic growth as well as environmental

protection, much as it is already been done with deforestation mapping (FINER et al., 2018).

Satellite images are subject to difficulties such as atmospheric interference, especially

cloud occlusion, variations in solar radiation and differences in sensor recordings that are used

in different satellites. There is also possible occlusion caused by relief features, that is, por-

tions of the Earth’s surface hidden by relief at the satellite’s observation point. Many kinds of

classification analyses can be carried out based on vegetation cover data, in particular we are

interested in identifying the type of vegetation, and in the case of crops, the identification of

the cultivated species. There are already works for the classification of several species, such

as corn (AVCI; SUNAR, 2015), soy (ZHONG et al., 2016), cotton (XUN et al., 2021), sugar

cane (SINGH; PATEL; DANODIA, 2020), brachiaria and coffee (MOREIRA et al., 2010). The

identification of crops by satellite data allows the mapping of large regions in a short time, and
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the mapping of cultures favors the understanding of how the planted areas interact with other

types of soil occupation, favors the understanding of the dynamics of agriculture in a region.

Knowing the land use in a region helps to identify environmental problems such as deforesta-

tion and the consumption of agricultural defensives, allows planning for harvests and allows

anticipating the needs of agricultural activity, eventually favoring the development of adequate

public policies.

Coffee is an important crop in the region of Lavras, MG, where UFLA is located. The

state of Minas Gerais accounts for more than 50% of the national coffee crop. Being able to pro-

duce and keep updated an adequate mapping of coffee cultivation in the state of Minas Gerais is

therefore important in the economic and environmental context of the region. There are vege-

tation cover classification initiatives such as MAPBIOMAS1 which contains data updated until

2019 and does not classify coffee plantations and the Portal do Café de Minas initiative2 which

aimed to identify coffee plantations and was closed in 2018. Identifying coffee plantations is

still challenging and there is a lack of accurate, up-to-date, publicly available data on coffee

regions. Although coffee classification works already exist, it is not always feasible to try to

reproduce existing works. Obstacle examples to use previously described work include: use of

proprietary data at a significant cost, regional interference from cloudiness, terrain relief, inter-

cropping of cultures, differences between development stages (phenology), growth stages (age

of plants), size of properties and lack of presentation of software used (HUNT et al., 2020).

The above mentioned difficulties affect spectral signature, local image patterns and sur-

face patterns, therefore classification models should be tunned at their particular goal regions,

even though the methods are the same. This work intends to carry out the analysis for regions

near the municipality of Lavras, MG, Brazil, given the importance of coffee growing in the

region and the difficulty for creating ground truth maps without funding.

Data and tools needed for mapping can be expensive to acquire. This work, like so many

other at public universities in Brazil, had no funding, so only free software and publicly avail-

able data were used, except for coffee plantation polygons, kindly provided by EPAMIG, gen-

erated years before by joint EPAMIG/EMATER mapping projects that received public funding.

However, because this data was outdated and had several precision problems, coffee plantation

polygons were fully reviewed and corrected for the working regions in this research.

1 https://mapbiomas.org/
2 http://portaldocafedaminas.emater.mg.gov.br/
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This work is an investigation of how accurate can coffee plantations be identified using

freely available data and tools, with the following specific goals in mind:

• try the Random Forest (BREIMAN, 2001) algorithm to deal with kind of error generated

by demarcating coffee plantations on satellite images, instead of choosing prime samples;

• see how well extrapolation of a classification model created in one region works on other

regions;

• investigate how useful are the multi spectral bands available on Sentinel-2 data for coffee

classification;

• mitigate expected pixel-based classification errors using some sort of spatial coherence

mechanism.

2 HYPOTHESIS

With so many sources of error for coffee classification, tight scope published works are

the norm. We investigated if is it viable to detect coffee plantations from publicly available

data (Sentinel-2 MSI), using publicly available software (R, Random Forest), using a simple

training approach, that is to extract all data available from a manual classification area. Despite

its many challenges, we hypothesize that coffee mapping is viable for large areas, using pub-

licly available data and software, on ordinary computers (as opposed to high end computers),

with good accuracy, by combining already tried strategies of model tuning, using pixel-based

classification.

3 THEORETICAL BACKGROUND

Coffee mapping is evolving since around the year 2000 when satellite images started

being used for coffee mapping (ALVES; RESENDE; ANDRADE, 2000). Since then, several

new technology advances have provided increasing success in such task.

There are many approaches to coffee mapping using remote sensing data (HUNT et al.,

2020):
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• Pixel-based, where each pixel3 is classified separately. It works well with low and mid

resolutions but has little spatial coherence and produces mappings in which false positives

and false negatives are scattered across the image, in an effect that may be called salt-and-

pepper error.

• Sub-pixel, where each pixel is considered a mixture of classes of the classes being iden-

tified, in order to overcome limitations of the spatial resolution.

• Texture-based, where the pixels are classified using neighborhood information, where

patterns either on the surface (SAR4 images) or the visual pattern (high-resolution optical

images) are used in the classification.

• Object-based, where pixels are first grouped into sets through some properties, and then

classified as a set.

• Fusion and hybrid approaches exist, combining different kinds of data (spectral, SAR,

relief) or combining the above approaches.

Because there are different types of coffee growing systems, coffee mapping should be

capable of classifying more than one coffee class as done in previous work (MASKELL et al.,

2021; ESCOBAR-LÓPEZ et al., 2022).

As newer satellite sensing instruments become capable of sensing more spectral bands,

choosing bands for use in a classification model impacts its accuracy. Choosing bands is usually

done by testing correlation or Principal Component Analysis (PCA). However such results are

bound to change as a factor of the sampled data, moving classification to a different area, with

different classification samples, or adding new training samples for model creation would make

changes in how useful any band is in the model. Spectral bands are often associated with a

particular usefulness, for instance, Sentinel-2’s band 10 (1363.5 nm) is known for cirrus cloud

detection because it gets reflected by water in high altitudes and absorbed by water closer to the

ground. However, given the absence of cirrus clouds, it is unclear whether this band could help

differentiate coffee plants from some other vegetation. We decide to use Random Forest’s own

variable importance ranking to choose which bands to use. Results differ slightly depending

3 A pixel is the smallest data in a set that define some visual information, such as an image. In remote
sensing, a pixel is associated with the smallest sensing area and contains information from all spectral
bands that the sensing instrument is able to capture.

4 Synthetic Aperture Radar (or just radar for short)
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on the training data, but for the training data used for the results shown later, the only band

removed from the data was band 10. As an example for contrast, Escobar-López et al. also

removed bands 1 (440nm) and 12 (2200nm) from their data (ESCOBAR-LÓPEZ et al., 2022).

Other strategies to cope with the difficulties for coffee classification, include using

multi-temporal data (MOREIRA; BARROS; RUDORFF, 2008; BERNARDES et al., 2012;

ORTEGA-HUERTA et al., 2012), so that phenological changes trough different seasons are

captured. Cloud coverage is also mitigated by fusing data for different days, specially when

SAR data is also present (MASKELL et al., 2021). Ad hoc strategies also were found, for

instance, Andrade et al. mapped water lines and made a 50m buffer around them to mask cof-

fee identification, because such areas were protected by law in the studied area, and forest has

similar spectral properties as coffee crops (ANDRADE et al., 2011).

Texture (SILVA et al., 2009; LELONG; THONG-CHANE, 2003) or Object-based (VIEIRA

et al., 2007; SANTOS et al., 2012) classifications benefit from creating sets of spatially close

pixels with the same classification. However they involve significantly more computation and

more complex tuning of the classification model creation. Poor choice of features can lead to

whole sets of pixels being misclassified. Comparison of pixel-based versus texture or object-

based tend to favor set classification (GAERTNER et al., 2017; ARIAS, 2007). The term tex-

ture is also used with two different meanings, it could be statistical attributes such as standard

deviation, contrast, entropy, etc. (MARUJO et al., 2017) which in turn may used for image

segmentation into objects (CHAKRABORTY; SEN; HAZRA, 2009), but it also could mean

frequency attributes that measure directionality (TSAI; CHEN, 2017).

The algorithms used for classification also vary greatly, including Support Vector Ma-

chine, Multi Layer Perceptron (BOELL, 2016), Random Forest and others. There are some

comparisons already made (SOUZA et al., 2016) but accuracy results vary significantly be-

tween studies, especially because there are many ways of measuring accuracy. There has

been published works on how sampling affects Machine Learning classification (RAMEZAN;

WARNER; MAXWELL, 2019) but different classification algorithms are affected differently

by sampling.

Coffee mapping has evolved from RGB thresholding in the years 2000 to multi-spectral

machine learning in two decades, but there is still room for much improvement. A few works,

previously cited in this section, are shown in Table 1 to illustrate both evolution in the state of

the and comparison to this work.
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Table 1 – Instances in timeline of coffee mapping

Year 1st author Remarks
2000 Alves RGB threshold classification.
2007 Vieira Used proprietary software, concludes that remote sensing is useful for

mapping.
2008 Moreira Used multi-temporal images and maximum likelihood estimation. Pro-

prietary software.
2011 Andrade Used Artificial Neural Network and proprietary software. Used terrain

relief to rule out coffee from nearby water streams because those areas
would be protected.

2016 Boell Compared Multi-layer Perceptron and Support Vector Machine on pro-
prietary software. Used general terrain cover classes including coffee.
Not much detail about how the manual classification was done.

2016 Souza Compared variables and algorithms for classification. Used proprietary
data and software. Used general classes. Concluded that coffee is more
often confused with forest and that spectral variables are more correlated
than textural ones.

2017 Marujo Used object segmentation. Effort on separating distinct coffee classes.
Highlights texture advantages. Similar results on all coffee classes..

2017 Tsai Proposed two frequency indices for classification.
2017 Baeta Deep Learning (Convolution Neural Networks). Processing on GPU.

Used classifiers on different size windows.
2021 Maskell Used Sentinel-1 & 2 data fusion, multi-temporal, Random Forest classi-

fier.
2022 Lopez Used Sentinel-2 plus radar with Random Forest, multi-temporal.

4 METHODOLOGY

Any machine-learning based classification and mapping must consider choosing sam-

ples for the training phase. Training is the phase where the classification algorithm chooses

rules and their parameters that will allow classification. Once training is done. The classifica-

tion algorithm is configured and is therefore called a classifier. The classifier will then receive

new input data, producing a classification output for each input received.

Training data is often chosen from unequivocal data. A classifier used for coffee classes

would then receive data samples that are good instances of those coffee classes. But because

coffee crops may have very different characteristics, creating many coffee classes that confines

that variation into homogeneous classes is often the logical approach. However, obtaining in-

formation about the location of coffee crops is difficult enough. Generating that information

for each coffee class might be unfeasible because a single coffee plot may have a subarea with

unhealthy or underdeveloped plants. A coffee crop may contain trees, their shadows, and bare



17

soil tracks which are unlikely to be separated from the coffee plants in the training data. Crop

borders are likely to have different characteristics from the internal areas as pixels in the remote

sensed data would be a mixture of characteristics from coffee plants and bare soil pathways or

whatever is at the border.

We have generated training data by manually drawing coffee polygons over Sentinel-2

data for each coffee class. This manual classification was done by expert interpretation us-

ing high resolution, freely available data that was only used at this phase. Data sources were

CBERS-4A satellite, Google Maps imagery, and old vector mapping data from previous map-

ping projects at Brazilian research institutes. The variety of sources, which span for a time

period of at least a year, produced a high confidence in the manual classification.

Three distinct regions were fully classified manually. They are shown in Figure 2 in

the article at Part Two. All pixels from training region 1 were used as input for training. Only

coffee pixels from regions two and three were used as input, as way of increasing the number

of coffee samples in the training.

Choosing training data if a tricky situation because if only perfect samples of coffee

are used in the training, the resulting mapping would shrink coffee areas and produce holes in

coffee patches. On the other hand, samples from trees, tree shadows and roads, identified as

coffee for the training increase the likelihood of false positives during the classification phase.

In this work, the manual classification consisted of drawing polygons over coffee crops,

without regard for noise inside or on the borders. Only big features such as a large building

surrounded by crops were marked. Crop polygons then must be converted into raster data

(pixels) before training. Only pixels completely covered by the polygons were considered for

their respective coffee classes, as is done by the rasterization algorithm in the terra library for

R language. This reduces the areas a little, but does not impose a strict classification method.

When the coffee polygons are created, it is expected that some pixels on the borders are noisy,

that is, are poor instances for the coffee class. But because noise would also be expected inside

the polygons for unhealthy plants, tracks and trees, we just assume the training must deal with

noise.

The Random Forest algorithm is known for being robust to noisy data, as classification

is done independently several times and the final output derives from majority. Good results are

obtained as long as the noisy samples are in small proportion compared to the good samples.
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In order to provide a large amount of good samples, all samples from coffee classes

available at training were used. The training is simplified because manual classification is not

very strict and also there is no need for a strategy for choosing training samples. During ex-

perimentation, it was noticed that a large number of samples were not a significant computing

obstacle.

The choice of spectral bands to use for training and mapping is also a common concern

in similar work. We assumed that even though some bands would have little correlation to

the classification, any information might be helpful. Using all spectral bands of Sentinel-2

did not prove to be a computing obstacle either. As the Random Forest algorithm has its own

importance ranking for variables and the ranger library could compute that rank automatically

during training. We only tested how accuracy varied from removal of the lower rank band.

We noticed that a minor enhancement was produced from removal of the less important band,

and that improvement quickly turns into accuracy loss as lower importance bands keep being

removed.

In this work, instead of using statistical samples and statistical accuracy indices, we

decided to compute every pixel in the working region. Randon Forest resistance to over-fitting

was put to the test, by using every pixel in the training region 1 for model training, as well

as every coffee pixel in the other training regions. Every pixel in the classification region was

subjected to classification and used to compute output accuracy. Even so, how to measure

accuracy could still be subject to debate. For instance, we had two coffee classes but if a sample

from one coffee class is classified as the other coffee class, is it a misclassification? We opted

to consider it a misclassification, honoring the class separation.

Because pixel-based classification cannot use information from the general area where

the pixel is in, texture-based methods have been proposed. We experimented on a novel way

to use the area information. Ambiguous values for spectral data would be better classified if

spatial coherence was used, that is, a pixel is more likely to be a member of a coffee crop if its

neighbors are also members of the coffee crop.

Given any area classification, this information could be represented as the number of

neighbor pixels that have been classified as member of a given coffee class. We call this number

the neighborhood information. Figure 1 show neighborhood information for the training region,

using a 5x5 neighborhood matrix. Considering such area, any pixel’s neighborhood information
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would be an integer number ranging from zero to 25, which indicates how many neighbors

(including the pixel itself) belong to a specific coffee class.

Figure 1 – Neighborhood values for the training region.

Neighborhood information is computed after some classication, by aplying a focal op-

eration on a classification map. A focal operation is a raster operation where each pixel gets a

new value as a function of the value of all pixels inside a window surrounding it. In this case, all

25 pixels of a 5x5 windows whose center is the pixel being computed have their values added,

then the sum is assigned as a new value for the pixel. The inicial raster data is a matrix where

each pixel that belongs to a specific coffee class is assigned a value of one and all other pixels

are assigned a value of zero.

However, a classification is needed for those initial raster values, while neighborhood

information is needed for classification. We circumvented this problem by doing a classification

in two or more steps, as shown in the article (Part Two), on the methodology overview (Figure

5) and in section 4.2. At each iteration, classification gets a little better, although by an ever

smaller amount, so it might not be worth the processing time to go further than the second or

third iteration. Images showing the classification improvement are also in Part Two (Figures 7

and 8).

Therefore, our pixel-based classification is enhanced by neighborhood information, that

gives it a spatial coherence and avoids the salt-and-pepper effect on classification results.
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5 ORIGINAL CONTRIBUTIONS

Previous coffee mapping work, to the best of our knowledge, has not been done using

Sentinel-2 (MSI) full multi-spectral data. While we found pixel-based, random forest classifica-

tion using Sentinel-2 data, details about how bands were chosen are unclear. We used Random

Forest’s own internal variable importance ranking for choosing spectral bands.

Mapping coffee using Random Forest has not been published using an area that is dis-

tinct from the training area, which is an important practical obstacle for mapping large areas.

We proposed a novel technique for using spatial coherence as a way to improve mapping

accuracy, one that is independent of the crop being identified, and that does not rely on visual

patterns created by the trees because, for coffee, tree spacing has significant variation and terrain

relief impact the pattern formed (BAETA et al., 2017).

Details of software (R language and its libraries), working region, the extrapolation of

the classification model to a nearby but disjunct region also set this work apart from previous

coffee classification in the literature.

6 CONCLUSIONS

Coffee identification using Random Forest classification has shown to be able to deal

with high levels of noise produced during manual classification that generates the training data.

Nevertheless, the training data has shown to be the most important factor for good accuracy.

We propose that instead of worrying about shadows and clear spots inside plantations, training

efforts should concentrate on finding relatively enough distinct coffee samples compared to the

non-coffee samples. Because contiguous areas may have few coffee pixels, our solution to

increasing the ratio of coffee samples was to add only coffee samples from other areas.

We made accuracy comparisons when removing bands with lower computed importance

during classification. Because an unexpected band ranked high for classification, further work

needs to be done in investigating what could be the best band subset to use in training for coffee

identification. Using almost all data from multi-spectral MSI instrument in Sentinel-2 satellites

enhances classification accuracy. The accuracy gained from removing the least important band

(band 10) is only marginal.
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Adding vegetation indices to training data also showed a marginal accuracy increase

for coffee classification. Further work on experimenting which indices subset would be more

useful is recommended.

Neighborhood data is very useful for elimination of salt-and-pepper error. By comput-

ing how many neighbors of each coffee class and using that information during training, the

classification model will more likely keep the pixels that were classified along with its neigh-

bors on the same class. The resulting classification is more accurate and resembles that of an

object-based classification without the need for finding the objects in advance.
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PART TWO

This part is a preliminary version of the article:

Coffee mapping using Sentinel-2 data and spatial coherence

1 Abstract

In this work, we report findings gathered by experiments on mapping coffee plantation

using Sentinel-2 data and Random Forest algorithm classification for the region near the city of

Lavras, MG, Brazil. We cover extrapolating the classification model to nearby areas for which

no samples were used for training, selecting spectral bands and using vegetation indices. We

also report a new methodology, for increasing accuracy by spatial coherence that is appropriate

to any pixel based mapping of crops. We hope to help shorten the gap between current coffee

classification studies and the production of large maps for coffee crops.

2 Introduction

The coffee sector is a significant part in Brazil’s economy. Keeping track of coffee plan-

tations and how it changes over time is useful for establishing public policies and understanding

how the sector responds to them, similiar to what is been done with deforestation (FINER et al.,

2018). Satellite remote sensing data have been used to map coffee plantations and could play a

major role in mapping coffee over vast areas and it has been done with reported high accuracy,

despite its many challenges. However, accurate, up to date maps are not easy to find, as there

seems to be a gap between academic classifications and practical mapping.

Random Forest classification (BREIMAN, 2001) for land use is common in the litera-

ture and has been used to map coffee (CHEMURA; MUTANGA, 2017; KELLEY; PITCHER;

BACON, 2018; BOURGOIN et al., 2020) under different conditions, most commonly for clas-

sifying very distinct classes such as water bodies, urban areas, bare soil and few distinct crops.

Nonetheless, since there are different coffee growing system with distinct spectral signatures,

coffe is often more than one class, such as in the work of Using distinct classes from a spectral

point of view, tends to produce good accuracy. However, since useful classes are very sub-

jective, we wanted wanted to experiment how well Random Forest classification would be for

detecting a single crop: coffee.
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3 Study area and Data

The experiments reported here used data from Sentinel-2 MSI instrument, tile 23KMS,

recorded on June 25, 2022, which is almost free of clouds and areas within that tile which were

used were all free of clouds. The data is near the city of Lavras, MG, Brazil, and contains many

coffee plantations. Coffee mapping was made by classification using random forests algorithm.

We obtained polygons that demarcate coffee plantations from previous mappings from

EMATER/EPAMIG projects. This data used to be available from Geoportal do Café1.

Other satellite images were used for manual classification and processing was done us-

ing R language version 4.2.2, Terra library version 1.7.3 (for geographic raster and vector

processing) and ranger library version 0.14.1 (random forests implementation).

Since polygons were 3 years old, they were manually verified and edited by using high

resolution images from CBERS-4A satellite (pan sharpened 2m resolution) and from Google

Maps (resolution not disclosed, but higher then CBERS4A in the region). Four manually ver-

ified regions were used for the data reported here, with extents in WGS 84/UTM zone 23S

being:

• training region 1: 486700 to 492624 x, 7650110 to 7652390 y (1430.7 ha);

• training region 2: 498534 to 500530 x, 7646218 to 7647919 y (363.8 ha);

• training region 3: 500298 to 502017 x, 7657617 to 7659499 y (333.2 ha);

• classification region: 504138 to 509636 x, 7648014 to 7650800 y (1587.8 ha).

These regions were verified for new plantations, coffee plantations that were put to different

use and also coffee plantations polygons were also verified for boundaries, including precision

errors from the previous mapping. These regions are around the urban area of Lavras (Figure 2).

Some coffee plantations were difficult to verify over satellite images because the plants were too

small or had very few leafs. We knew these plantations would share little characteristics with

other areas, so they were marked as a different class of coffee (Figure 3). 11 months later, these

classes were confirmed to be coffee plantations using new satellite images. When mapping

coffee, is usually useful to have classification of more than one class, because properties change

a lot over the year and different kinds of coffee systems are likely to appear on classification

(ESCOBAR-LÓPEZ et al., 2022).
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Figure 2 – Study areas in the city of Lavras shown over the Sentinel-2 RGB data used.

Training region 1 Urban area
of Lavras

Classification
region

Training
region 3

Training
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Figure 3 – CBERS-4A pan sharpened image (June 21, 2022) showing coffee plantation polygons of both
coffee classes: class 1 (hashed yellow) where coffee canopies were not observable in manual
classification; class 2 (green) where canopies are visible.
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Coffee polygons contain noise such as big trees inside the plantation, their shadows and

farm tracks. They were left as is, for a more practical experiment on coffee mapping than using

only pure pixels samples.

We tested NDVI and NDWI vegetation indexes on both coffee classes to confirm they

would be distinct in the data (Figure 4).

Figure 4 – Vegetation indexes for the two coffee classes
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4 Methodology

We created Random Forest classification models using different sets of bands, including

the creation of vegetation indices and our new neighborhood data. Classification was done in

the classification region except for confirmation of the out of bag error (OOB error) which is

an error measurement for the Random Forest algorithm. Accuracy measurements in this work

is always producer accuracy.

Due to the cost of creating a manual classification, needed for training and for computing

the accuracy of results, small regions of the multi spectral data from Sentinel-2 were used. Using

1 https://portaldocafedeminas.emater.mg.gov.br/
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a localized subset of data of training is considered a valid, effective strategy for classification

of geospatial data using machine learning (RAMEZAN; WARNER; MAXWELL, 2019). The

training regions 2 and 3 were introduced later on our experiments as a way to provide new,

diverse samples and also change proportion of samples of coffee/non coffee classes used for

training.

4.1 Traditional methodologies to improve classification

The training region 1 was used to train a model for classification. All pixels inside the

polygons were used as coffee plantation samples (2 classes of coffee), all other pixels were

used as “not coffee” class. All 13 Sentinel-2 MSI spectral bands were used in the training. The

ranger library reported an OOB error of 0.0311. To verify if this error measurement would be

consistent with overall accuracy, nine tenths of the pixels in the training region 1 were used for

training, while the remaining one tenth were used for classification, resulting in an accuracy of

96.9%, compatible with the OOB error computed.

Using all pixels from the training region 1 for training, followed by classification of all

pixels in the classification region produced an overall accuracy of 87.34%, which was unex-

pected as both regions are in the same image and therefore have little differences. Trying to

improve accuracy, we tested the following three known strategies.

Removing less important bands

As the independent variables may be ranked by importance in the Random Forest algo-

rithm, the importance computed by the ranger library was used to choose bands for removal

from training, the idea is that using less variables the algorithm with more memory to work the

most important bands and would also reduce the noise that the training algorithm has to deal

with. Band 10 (SWIR/Cirrus 1.375µm) was ranked the less important band in classification.

Removing it resulted in a marginal improvement in accuracy, as report in the Results section.
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Adding samples of coffee classes to the training

We used all pixels in training region for training, instead of using a small sample as done

usually because we wanted to let the classification manage the noise that naturally occurs on

crop delimitation for satellite images. Noise includes crop borders, farm tracks inside the crops,

shadows from big trees and differences in vigor of the actual coffee trees. Random Forest is

known for its robustness related to overfitting, so a classification would benefit from a large

number of examples. Also, the non-coffee class is very diverse, because we did not create

distinct classes for urban areas, rivers, lakes and other vegetation covers.

Because the number of samples for non coffee class was far greater and both coffee

classes, all coffee pixels from training regions 2 and 3 were added to the training data. Increas-

ing the number of samples had the most improvement in accuracy.

Adding vegetation indexes to the training

Vegetation indexes are commonly used for land cover classification, but because they

are not independent data, but instead computed from the bands already available for training,

there is always a discussion about its benefits. We chose NDVI and NDWI indexes because the

first is a well established index and the latter is related to water. Adding both indexes resulted

in a marginal improvement in accuracy.

Methodology Overview

The adopted methodology consisted of generating a manual classification from the best

data available to us followed by experimenting several tuning procedures that would generate

the highest accuracy. Later, neighborhood data was generated from the initial classification and

fed back to the model generation, as shown in Figure 5.

4.2 Novel methodology to make use of spatial coherence

Tweaking the training phase, we manage to turn a very poor classification into a good

one, close to that obtained by classifying in the same training region, however, several classifi-



31

Figure 5 – Methodology Overview
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cation errors would clearly benefit from neighborhood information. A pixel is clearly less likely

to be a sample of coffee plantation if there are none or few coffee pixels nearby. Information

from neighbor pixels is also important because coffee patches form patterns in the images due to

row spacing and the similar height of coffee plants. This pattern is clearly different from forest

patches (Figure 6), which is most common source for false positives in the region of interest.

Therefore, textural classification seems a promising tool.

Textural classification for coffee has been done for surface texture, i.e. canopy height

variation, using SAR data (SILVA et al., 2009), and also done for image texture, i.e. variation

of intensity in pixels (LELONG; THONG-CHANE, 2003; TSAI; CHEN, 2017). We think such

methods still need further work, as there are many non trivial ways for representing texture

in useful ways for classification. It is very dependent on image resolution, size of analyzed

windows, sun/shadow arrangements and land slope (BAETA et al., 2017). Spatial coherence

is also the principle behind object based classification methods such as done by Wang et al.
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Figure 6 – Coffee plantation (upper region, delimited by a polygon) and forest (lower region) create
distinct shadow patterns on Sentinel-2 10m resolution images.

(WANG et al., 2018). We propose a simpler, direct way to put spatial information to use in the

classification, without need of textural analysis.

The polygons for coffee plantations were rasterized, creating a raster image where there

are ones are in place of the plantations and zeroes elsewhere. Because we had two classes for

coffee, two images were created, one for each class. These images were then convoluted, so that

each pixel gets the sum of its neighbors, creating information about how many nearby pixels

are also from the same coffee class. We used a 5x5 pixel neighborhood.

The neighborhood information is clearly beneficial to the classifier, but to use it for

classification one would need to know the classification output before the classification. To get

around this problem, the classification was done in two steps. In the first step, classification is

done without neighborhood information. The resulting classification is deemed an intermediary

classification and used to create neighborhood information in the classification area. In the

second step training is done again, with neighborhood information and classification is done

again, but this time using neighborhood information from the intermediary classification. The

classification done on the second step does not contains the salt-and-pepper effect of single,
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misclassified pixels, borders are more accurate and holes inside plantations are smaller. The

neighborhood information creates an eroding effect on false positives while have a dilating

effect on false negatives, as seen in Figure 7.

Figure 7 – Effect of neighborhood for classification improvement - red pixels were removed from coffee
classes and blue pixels were inserted.

Neighborhood information may be used in an iterative manner because subsequent clas-

sifications tend to be better than the previous. In our test region, accuracy increased from 92.4%

to 94.3% with one iteration (adding neighborhood information), and then to 94.4% with two it-

erations (neighborhood updated). Such a marginal enhancement, however, suggests that using

it as an iterative method may not be worth the extra computation. Applying neighborhood

information creates more continuous areas, feasible for creation of polygons.

5 Results

Performing classification on the same area produced the highest accuracy. The loss of

accuracy noticed when classifying on a different area could be mitigated using several tech-

niques, including our novel spatial coherence modification to the training data. Random Forest

classification has shown to be very robust, using large amounts of training samples, which

simplify the sampling process by including as much different samples as possible. However,

balancing the percentage of coffee and non-coffee samples shown to be important in training.
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Figure 8 – Effect of second iteration on neighborhood data - red pixels were removed from coffee classes
and blue pixels were inserted.

Removing bands form the training data is very dependent on the training data, remov-

ing a few of the less important bands, according to the internal Random Forest importance, we

found that removing band 10 from training data improved accuracy by 0.3%. Changes in ac-

curacy when removing the less important bands, according the importance classification from

the previous set of bands, showed a decrease in accuracy after removing band 10 (Figure 9).

In similar experimentation, with different scenarios than reported here, removing up to the 3rd

less important bands, resulted in marginal classification improvement.

Figure 9 – Changes in accuracy when removing less important bands. Be aware that the y axis does
not start at zero to enhance the differences. The x axis is cumulative, meaning that in each
column, all bands removed previously are still absent from data.
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Removing further bands decreased accuracy. Adding NDVI and NDWI bands accounted

for another 0.3% increase in accuracy. Sentinel-2 Band 1 (Coastal aerosol 0.44µm) was sur-

prisingly ranked first in importance for coffee mapping in every run.

Proportion of samples of different classes is important in the accuracy. Increasing the

number of training samples from 16,605 (11.6% of all samples) to 35,510 (21.9%) resulted in

4.74% increase in overall accuracy and was the most useful improvement for classification.

Our novel neighborhood data increased accuracy in 1.9% for one iteration and 1.95%

for two iterations, creating mapped regions more likely to be represented as coffee plantation

polygons.

The loss of precision observed for classifying a region different from the training re-

gion could be recovered by using the techniques described. Table 2 is a summary of precision

evolution as the classification was enhanced.

Table 2 – Timeline of classification precision.

Description Precision Difference

Training and classifying on Training Region 1, 13
bands

0.9694 –

Training on TR1, classifying on CR, 13 bands 0.8734 -0.0960
Training on TR1, classifying on CR, 12 bands 0.8760 +0.0026

Training on TR1 and TR2, classifying on CR, 12
bands

0.8931 +0.0171

Training on TR1, TR2 and TR3, classifying on CR 0.9234 +0.0303
Added NDVI and NDWI to data 0.9242 +0.0008

Added Neighborhood data 0.9429 +0.0187
Second iteration of neighborhood data 0.9437 +0.0008

6 Discussion

We noticed significant difference in accuracy when using the classification model for

one region to another. Since both regions were near each other, on the same satellite image, for

classifying similar crops, we expected similar results. This is a warning for giving too much

importance on reported accuracy rates, on classification work. Not only classification varies a

lot depending on how the training samples are chosen, but how also on also on how subsets are

chosen.

Using Sentinel-2 data, the band 10 was ranked less important for coffee classification.

Removing less important bands from training should be done iteratively, as the importance of
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the remaining bands may change on the new model. We noticed that removing less important

bands quickly exhausts its benefits. Removing one band was best for this work. We performed

other classification tests with more coffee classes that benefit from removing at most three

bands from the training data. Since improvement was small it seems that the general rule

is that Random Forest classification benefits from having more spectral bands. We have no

explanation for the consistent first place in importance rank for band 1 and believe this merits

further investigation.

Previous work investigating how to sample data for training seem to be based on classes

with as little noise as possible. We believe that is unpractical for large scale classification,

which we should be aiming when implementing satellite data classification. The potential of

generation of large mappings is the reason for investing in satellite classification and there is no

avoiding large amounts of noise. Random Forest classification is clearly capable of dealing with

such noise, but the samples used for training are still play a most significant role in accuracy.

Classes with lots of noise must have a large number of samples, but with proportion in mind as

to not harm other classes.

7 Conclusion

Coffee mapping using Sentinel-2 data and Random Forests classification algorithm achieves

a good accuracy, comparable with what is been reported in the literature. Although accuracy

may vary significantly depending on training data, classification may be fine tuned using simple

methodologies. The disadvantages of pixel based classification may be mitigated using spatial

coherence in the training.
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APPENDIX A – Source code for classification

The source code presented here, in R, using terra and ranger libraries, creates a map-

ping from Sentinel-2 data, manual classification polygons and area delimiters. Data files are not

included.
#!/usr/bin/env Rscript

# This script creates a classification model using 3 training regions, without band 10, adding NDVI and NDWI, and uses two

# passes of neighborhood information.

# Author: Bruno de Oliveira Schneider - UFLA, 2023

cat(’\n=====================================================================\n’)

cat(’3 TRs, B10 drop, +NDVI +NDWI, 2 neighborhood passes.\n’)

library(terra)

# Load training regions delimiters

trainingRegion1 <- vect(’regiao-treinamento.shp’)

trainingRegion2 <- vect(’regiao-treinamento2.shp’)

trainingRegion3 <- vect(’regiao-treinamento3.shp’)

# Load classification region delimiter

classifRegion <- vect(’regiao-classificacao.shp’)

# Load Sentinel-2 data (higher/reference resolution first)

b2 <- rast(’T23KMS_20220625T131301_B02.jp2’)

b2T <- crop(b2, trainingRegion1)

# Other data with the same higher resolution

b3 <- rast(’T23KMS_20220625T131301_B03.jp2’)

b4 <- rast(’T23KMS_20220625T131301_B04.jp2’)

b8 <- rast(’T23KMS_20220625T131301_B08.jp2’)

# Load bands that need to be resampled

b1 <- rast(’T23KMS_20220625T131301_B01.jp2’)

b5 <- rast(’T23KMS_20220625T131301_B05.jp2’)

b6 <- rast(’T23KMS_20220625T131301_B06.jp2’)

b7 <- rast(’T23KMS_20220625T131301_B07.jp2’)

b8a <- rast(’T23KMS_20220625T131301_B8A.jp2’)

b9 <- rast(’T23KMS_20220625T131301_B09.jp2’)

b10 <- rast(’T23KMS_20220625T131301_B10.jp2’)

b11 <- rast(’T23KMS_20220625T131301_B11.jp2’)

b12 <- rast(’T23KMS_20220625T131301_B12.jp2’)

# Create multi spectral image

bNIR <- crop(b8, trainingRegion1)

bRed <- crop(b4, trainingRegion1)

bMIR <- resample(b12, b2T)

bNDVI <- (bNIR -bRed) / (bNIR+bRed)

names(bNDVI) <- c(’NDVI’)

bNDWI <- (bNIR -bMIR) / (bNIR+bMIR)

names(bNDWI) <- c(’NDWI’)

multiTraining1 <- c(resample(b1, b2T),

b2T,

crop(b3, trainingRegion1),

bRed ,

resample(b5, b2T),

resample(b6, b2T),

resample(b7, b2T),

bNIR ,

resample(b8a, b2T),

resample(b9, b2T),

#resample(b10, b2T),

resample(b11, b2T),

bMIR)
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names(multiTraining1) <- c(’coastal’, ’blue’, ’green’, ’red’, ’RedE5’, ’RedE6’, ’RedE7’, ’NIR’, ’NNIR’, ’wVapor’,

’SWIR_11’, ’SWIR_12’)

# Create vegetation indices NDVI and NDWI

b2t2 <- crop(b2, trainingRegion2)

bNIR2 <- crop(b8, trainingRegion2)

bRed2 <- crop(b4, trainingRegion2)

bMIR2 <- resample(b12, b2t2)

bNDVI2 <- (bNIR2 -bRed2) / (bNIR2+bRed2)

names(bNDVI2) <- c(’NDVI’)

bNDWI2 <- (bNIR2 -bMIR2) / (bNIR2+bMIR2)

names(bNDWI2) <- c(’NDWI’)

multiTraining2 <- c(resample(b1, b2t2),

b2t2 ,

crop(b3, trainingRegion2),

bRed2 ,

resample(b5, b2t2),

resample(b6, b2t2),

resample(b7, b2t2),

bNIR2 ,

resample(b8a, b2t2),

resample(b9, b2t2),

#resample(b10, b2T),

resample(b11, b2t2),

bMIR2)

names(multiTraining2) <- c(’coastal’, ’blue’, ’green’, ’red’, ’RedE5’, ’RedE6’, ’RedE7’, ’NIR’, ’NNIR’, ’wVapor’,

’SWIR_11’, ’SWIR_12’)

b2t3 <- crop(b2, trainingRegion3)

bNIR3 <- crop(b8, trainingRegion3)

bRed3 <- crop(b4, trainingRegion3)

bMIR3 <- resample(b12, b2t3)

bNDVI3 <- (bNIR3 -bRed3) / (bNIR3+bRed3)

names(bNDVI3) <- c(’NDVI’)

bNDWI3 <- (bNIR3 -bMIR3) / (bNIR3+bMIR3)

names(bNDWI3) <- c(’NDWI’)

multiTraining3 <- c(resample(b1, b2t3),

b2t3 ,

crop(b3, trainingRegion3),

bRed3 ,

resample(b5, b2t3),

resample(b6, b2t3),

resample(b7, b2t3),

bNIR3 ,

resample(b8a, b2t3),

resample(b9, b2t3),

#resample(b10, b2t3),

resample(b11, b2t3),

bMIR3)

names(multiTraining3) <- c(’coastal’, ’blue’, ’green’, ’red’, ’RedE5’, ’RedE6’, ’RedE7’, ’NIR’, ’NNIR’, ’wVapor’,

’SWIR_11’, ’SWIR_12’)

# Classification region data

b2C <- crop(b2, classifRegion)

bNIRC <- crop(b8, classifRegion)

bRedC <- crop(b4, classifRegion)

bMIRC <- resample(b12, b2C)

bNDVIC <- (bNIRC -bRedC) / (bNIRC+bRedC)

names(bNDVIC) <- c(’NDVI’)

bNDWIC <- (bNIRC -bMIRC) / (bNIRC+bMIRC)

names(bNDWIC) <- c(’NDWI’)

multiClassif <- c(resample(b1, b2C),

b2C,

crop(b3, classifRegion),

bRedC ,

resample(b5, b2C),
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resample(b6, b2C),

resample(b7, b2C),

bNIRC ,

resample(b8a, b2C),

resample(b9, b2C),

#resample(b10, b2C),

resample(b11, b2C),

bMIRC)

names(multiClassif) <- c(’coastal’, ’blue’, ’green’, ’red’, ’RedE5’, ’RedE6’, ’RedE7’, ’NIR’, ’NNIR’, ’wVapor’,

’SWIR_11’, ’SWIR_12’)

# Plot RGB image from classification image if intended

#plotRGB(multiTraining1, 4,3,2)

#img <- multiClassif[[c(4,3,2)]] # copy from the original set

# Load verified EMPAMIG/EMATER coffee polygons

cropPolys <- vect(’cafe-lavras-edt.shp’)

trainingPolys1 <- crop(cropPolys , trainingRegion1)

trainingPolys1$AREA_ha <- NULL # remove area column

trainingPolys2 <- crop(cropPolys , trainingRegion2)

trainingPolys2$AREA_ha <- NULL # remove area column

trainingPolys3 <- crop(cropPolys , trainingRegion3)

trainingPolys3$AREA_ha <- NULL # remove area column

classifPolys <- crop(cropPolys , classifRegion)

classifPolys$AREA_ha <- NULL # remove area column

# Rasterize crop polygons / balancing coffee samples

rasterClasses <- rasterize(trainingPolys1 , b2T, field=’Categoria’, background=0)

names(rasterClasses) <- c(’class’)

trainingData1 <- as.data.frame(c(rasterClasses , multiTraining1 , bNDVI , bNDWI))

rasterClasses2 <- rasterize(trainingPolys2 , b2t2 , field=’Categoria’, background=0)

names(rasterClasses2) <- c(’class’)

trainingData2 <- as.data.frame(c(rasterClasses2 , multiTraining2 , bNDVI2 , bNDWI2))

trainingData2 <- trainingData2[trainingData2$class > 0, ] # filter non-coffee samples

rasterClasses3 <- rasterize(trainingPolys3 , b2t3 , field=’Categoria’, background=0)

names(rasterClasses3) <- c(’class’)

trainingData3 <- as.data.frame(c(rasterClasses3 , multiTraining3 , bNDVI3 , bNDWI3))

trainingData3 <- trainingData3[trainingData3$class > 0, ] # filter non-coffee samples

fullTrainingData <- rbind(trainingData1 , rbind(trainingData2 , trainingData3))

cat(paste(nrow(fullTrainingData), ’samples used in training.\n’))

cat(’Number of samples for each class:’)

print(table(fullTrainingData$class))

# Create dataframe for classification

classifData <- as.data.frame(c(multiClassif , bNDVIC , bNDWIC))

# Define inputs and output

predictors <- c(names(multiTraining1), ’NDVI’, ’NDWI’)

form <- as.formula(paste(’class ~’, paste(predictors , collapse=’+’))) #warning: names must not contain spaces

# Create classification model (this may take some time...)

library("ranger")

classifModel <- ranger(form , data=fullTrainingData , importance=’impurity’, classification=TRUE)

cat(’Band importance ranking:\n’)

print(classifModel$variable.importance[order(classifModel$variable.importance)])

cat(paste(’Classification error (OOB):’, classifModel$prediction.error , ’\n’))

# Classify!

pred <- predict(classifModel , data=classifData , type=’response’)

# Accuracy function

ovAcc <- function(conmat) {

# number of total cases/samples

n = sum(conmat)

# number of correctly classified cases per class

diag = diag(conmat)
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# Overall Accuracy

OA = sum(diag) / n

# observed (true) cases per class

rowsums = apply(conmat , 1, sum)

p = rowsums / n

# predicted cases per class

colsums = apply(conmat , 2, sum)

q = colsums / n

expAccuracy = sum(p*q)

kappa = (OA - expAccuracy) / (1 - expAccuracy)

# Producer accuracy

PA <- diag / colsums

# User accuracy

UA <- diag / rowsums

outAcc <- data.frame(producerAccuracy = PA, userAccuracy = UA)

#print(outAcc)

global_acc = data.frame(overallAccuracy=OA, overallKappa=kappa)

#print(global_acc)

cat(’Producer accuracy for each class:\n’)

print(PA)

cat(paste(’Overall accuracy:’, format(OA, digits=4), ’Kappa:’, format(kappa, digits=4), ’\n’))

# Based from: http://gsp.humboldt.edu/olm/Courses/GSP_216/lessons/accuracy/metrics.html

}

# Create image from classification

rastClassif1 <- rast(ncols=ncol(b2C), nrows=nrow(b2C), nlyrs=1, crs=crs(b2C), extent=ext(b2C))

values(rastClassif1) <- pred$predictions

names(rastClassif1) <- c(’class’)

# Save to file, if intended. Supposing 2 classes, generates values up to 200.

#writeRaster(rastClassif1*100, ’classificacao.png’, overwrite=TRUE)

#plot(rastClassif1)

#plot(classifPolys, add=TRUE)

# Rasterize coffee polygons to generation a true classification

trueClassif <- terra::rasterize(classifPolys , b2C, field=’Categoria’, background=0)

# Confusion Matrix

realFactors <- factor(values(trueClassif), levels=c(0:2))

compFactors <- factor(pred$predictions , levels=c(0:2))

conMat <- table(compFactors , realFactors)

ovAcc(conMat)

# Generate raster from first neighborhood information. TR1.

cat(’Computing neighborhood data\n’)

neighborhood1 <- terra::rasterize(trainingPolys1[trainingPolys1$Categoria==1], b2T, field=1, background=0)

neighborhood1 <- terra::focal(neighborhood1 , w=5, fun=’sum’, fillvalue=0)

names(neighborhood1) <- c(’nbh1’)

neighborhood2 <- terra::rasterize(trainingPolys1[trainingPolys1$Categoria==2], b2T, field=1, background=0)

neighborhood2 <- terra::focal(neighborhood2 , w=5, fun=’sum’, fillvalue=0)

names(neighborhood2) <- c(’nbh2’)

multiTraining1 <- c(multiTraining1 , neighborhood1 , neighborhood2)

#plot(neighborhood1)

#print("Neighborhood histogram:")

#print(table(as.vector(neighborhood1)))

# Generate raster from first neighborhood information. TR2.

neighborhood1 <- terra::rasterize(trainingPolys2[trainingPolys2$Categoria==1], b2t2 , field=1, background=0)

neighborhood1 <- terra::focal(neighborhood1 , w=5, fun=’sum’, fillvalue=0)

names(neighborhood1) <- c(’nbh1’)

neighborhood2 <- terra::rasterize(trainingPolys2[trainingPolys2$Categoria==2], b2t2 , field=1, background=0)

neighborhood2 <- terra::focal(neighborhood2 , w=5, fun=’sum’, fillvalue=0)

names(neighborhood2) <- c(’nbh2’)

multiTraining2 <- c(multiTraining2 , neighborhood1 , neighborhood2)



42

#plot(neighborhood1)

# Generate raster from first neighborhood information. TR3.

neighborhood1 <- terra::rasterize(trainingPolys3[trainingPolys3$Categoria==1], b2t3 , field=1, background=0)

neighborhood1 <- terra::focal(neighborhood1 , w=5, fun=’sum’, fillvalue=0)

names(neighborhood1) <- c(’nbh1’)

neighborhood2 <- terra::rasterize(trainingPolys3[trainingPolys3$Categoria==2], b2t3 , field=1, background=0)

neighborhood2 <- terra::focal(neighborhood2 , w=5, fun=’sum’, fillvalue=0)

names(neighborhood2) <- c(’nbh2’)

multiTraining3 <- c(multiTraining3 , neighborhood1 , neighborhood2)

#plot(neighborhood1)

# Create new classification model using neighborhood data (this may take some time...)

trainingData1 <- as.data.frame(c(rasterClasses , multiTraining1 , bNDVI , bNDWI))

trainingData2 <- as.data.frame(c(rasterClasses2 , multiTraining2 , bNDVI2 , bNDWI2))

trainingData2 <- trainingData2[trainingData2$class>0, ] # filtrar a classe 0

trainingData3 <- as.data.frame(c(rasterClasses3 , multiTraining3 , bNDVI3 , bNDWI3))

trainingData3 <- trainingData3[trainingData3$class>0, ] # filtrar a classe 0

# Join all data

fullTrainingData <- rbind(trainingData1 , rbind(trainingData2 , trainingData3))

predictors <- c(names(multiTraining1), ’NDVI’, ’NDWI’)

form <- as.formula(paste(’class ~’, paste(predictors , collapse=’+’)))

cat(’Creating new classification model\n’)

classifModel <- ranger(form , data=fullTrainingData , importance="impurity", classification=TRUE)

cat(paste(’Classification error (OOB):’, classifModel$prediction.error , ’\n’))

# Create neighborhood data for CR

neighborhood1 <- rastClassif1

neighborhood1[neighborhood1$class==2] = 0 # filter class 2

neighborhood1 <- terra::focal(neighborhood1 , w=5, fun=’sum’, fillvalue=0)

names(neighborhood1) <- c(’nbh1’)

neighborhood2 <- rastClassif1

neighborhood2[neighborhood2$class==1] = 0 # filter class 1

neighborhood2[neighborhood2$class==2] = 1

neighborhood2 <- terra::focal(neighborhood2 , w=5, fun=’sum’, fillvalue=0)

names(neighborhood2) <- c(’nbh2’)

classifData <- as.data.frame(c(multiClassif , neighborhood1 , neighborhood2 , bNDVIC , bNDWIC))

cat(’Second mapping:\n’)

pred <- predict(classifModel , data=classifData , type=’response’)

rastClassif2 <- rastClassif1

values(rastClassif2) <- pred$prediction

#writeRaster(rastClassif2*51, ’classificacao.png’, overwrite=TRUE)

# Update confusion matrix

compFactors <- factor(pred$predictions , levels=c(0:2))

conMat <- table(compFactors , realFactors)

ovAcc(conMat)

#writeRaster(rastClassif2*100, ’classificacao-it1.png’, overwrite=TRUE)

cat(’\nSecond neighborhood iteration\n’)

neighborhood1 <- rastClassif2

neighborhood1[neighborhood1$class==2] = 0 # filter class 2

neighborhood1 <- terra::focal(neighborhood1 , w=5, fun=’sum’, fillvalue=0)

names(neighborhood1) <- c(’nbh1’)

neighborhood2 <- rastClassif2

neighborhood2[neighborhood2$class==1] = 0 # filter class 1

neighborhood2[neighborhood2$class==2] = 1

neighborhood2 <- terra::focal(neighborhood2 , w=5, fun=’sum’, fillvalue=0)

names(neighborhood2) <- c(’nbh2’)

classifData <- as.data.frame(c(multiClassif , neighborhood1 , neighborhood2 , bNDVIC , bNDWIC))

cat(’Third mapping:\n’)

pred <- predict(classifModel , data=classifData , type=’response’)

rastClassif3 <- rastClassif1

values(rastClassif3) <- pred$prediction
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compFactors <- factor(pred$predictions , levels=c(0:2))

conMat <- table(compFactors , realFactors)

ovAcc(conMat)

#writeRaster(rastClassif3*100, ’classificacao-it2.png’, overwrite=TRUE)
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