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RESUMO 

Objetivou-se verificar a associação da microbiota intestinal antes dos sinais clínicos de 

disenteria suína (DS); a resposta das células B a Brachyspira spp. e Salmonella enterica sorovar 

Typhimurium; e a utilidade da calprotectina fecal (FC) como um biomarcador de inflamação 

intestinal em suínos. No primeiro experimento, 60 amostras fecais foram coletadas de 15 suínos 

um dia após o contato com suínos inoculados via intragástrica com B. hyodysenteriae (d0); dois 

dias (d-2SD) e 1 dia (d-1SD) antes de se observar diarreia muco-hemorrágica, e no dia em que 

os animais desenvolveram diarreia muco-hemorrágica (MHD). Os perfis da microbiota fecal 

foram gerados com base na amplificação e sequenciamento do gene universal cpn60. Apenas 

um aumento no índice Chao1 em d-1SD e MHD em comparação com amostras d0 foi observado 

ao nível de gênero. A análise diferencial de abundância revelou que variantes de sequência 

única (ASV) foram modulados nos dias anteriores à observação de diarreia. Em resumo, existe 

alteração na microbiota fecal nos dias anteriores ao desenvolvimento da DS clínica. No segundo 

ensaio, células B suínas foram co-incubadas por oito (8) horas com inóculo controle negativo 

(n=6), E. coli LPS (n=6), B. hyodysenteriae (n=6), B. hampsonii (cepas virulentas e avirulentas, 

n = 3 em cada), B. pilosicoli (n=6), B. pilosicoli inativada (n=3), e S. Typhimurium (n =6). A 

mortalidade de células B foi avaliada usando a coloração Azul de Tripan, e a expressão de genes 

relacionados à ativação de células B foram avaliados através de RT-PCR. Após o período de 

exposição, apenas a S. Typhimurium e o LPS induziram aumento na mortalidade de células B. 

B. pilosicoli reduziu a expressão gênica de CD19, syk, lyn e TNF-α, quando comparado ao 

grupo controle negativo. Nossos achados sugerem que B. pilosicoli não provoca uma resposta 

imediata de células B independentes de células T, nem desencadeia mecanismos de 

apresentação de antígenos. Por outro lado, as outras bactérias são capazes de ativar diferentes 

genes dentro da via de sinalização de células B. No terceiro experimento, amostras fecais de 

suínos com colite foram coletadas de animais inoculados experimentalmente com B. 

hyodysenteriae ou controles (n = 18). Amostras fecais de suínos com enterite foram coletadas 

de animais inoculados com S. Typhimurium ou de controles (n = 14). As amostras fecais foram 

classificadas como: 0 = normal; 1 = fezes pastosas; 2 = fezes aquosas; 3 = diarreia mucoide; e 

4 = diarreia sanguinolenta. Os níveis de CF foram analisados usando ELISA sanduíche, ensaio 

imunoturbidimétrico e um teste de fita rápido. A concentração de CF foi maior em amostras de 

leitões com colite de escore fecal 4 em comparação com escores fecais ≤ 4 usando ELISA, e 

em fezes com escores 3 e 4 do que ≤ 1 usando imunoturbidimetria. Independentemente do 

ensaio utilizado, não foram encontradas diferenças nos níveis de FC entre os escores fecais para 

amostras de enterite. A FC só atinge níveis detectáveis após colite, mas não enterite, indicando 

seu potencial papel como biomarcador na colite infecciosa em suínos e possível suporte em 

intervenções terapêuticas mais criteriosas. 

 

Palavras-chave: Doenças entéricas, Saúde intestinal, Células B, Microbioma, Suínos.  



 

 

 

ABSTRACT  

This thesis aimed to verify the association of the intestinal microbiota preceding the clinical 

signs of swine dysentery (SD) on disease onset; to investigate the porcine T-independent B-cell 

response to Brachyspira spp. and Salmonella enterica serovar Typhimurium; and to assess the 

usefulness of fecal calprotectin (FC) as a biomarker of intestinal inflammation in B. 

hyodysenteriae and S. Typhimurium infected pigs. In the first trial, 60 fecal samples were 

collected from 15 contact pigs at: one day after contact with seeder pigs inoculated intra-

gastrically with B. hyodysenteriae (d0); 2 days (d-2SD) and 1 day (d-1SD) before 

mucohaemorrhagic diarrhea was observed, and at the day when pigs developed 

mucohemorragic diarrhea (MHD). Fecal microbiota profiles were generated based on 

amplification and sequencing of the cpn60 universal target. Only an increase in the Chao1 index 

in d-1SD and MHD compared to d0 samples was observed at the genus level for the alpha 

diversity index. Differential abundance analysis revealed that amplicon sequence variants 

(ASV) were modulated in the days prior to diarrhea observation. An increase in Alistipes dispar 

and Parabacteroides gordonii was detected in MHD. In summary, there was an alteration in 

the fecal microbiota in the days prior to the development of clinical SD. In the second trial, 

immortalized porcine B-cells were co-incubated for 8 hours with sham-inoculum (n=6), E. coli 

LPS (n=6), B. hyodysenteriae (n=6), B. hampsonii (virulent and avirulent strains, n = 3 for 

each), B. pilosicoli (n=6), B. pilosicoli dead (n=3), S. Typhimurium (n =6). B-cell mortality was 

evaluated using Trypan blue, and the expression levels of B-cell activation-related genes were 

assessed using RT-PCR. Only S. Typhimurium and LPS led to increased B-cell mortality follow 

the exposure period. B. pilosicoli downregulated CD19, syk, lyn, and TNF-α, when compared 

to the negative control group. Our findings suggest that B. pilosicoli does not elicit a B-cell 

response, , nor does it trigger antigen presentation mechanisms. All other bacteria could activate 

different triggers within the T-independent B-cell pathway. In the third trial, fecal samples from 

pigs with colitis were collected from animals experimentally inoculated with B. hyodysenteriae 

or from sham-inoculated controls (n =18). Fecal samples from pigs with enteritis were collected 

from animals inoculated with S. Typhimurium or from sham-inoculated controls (n = 14). For 

both groups, fecal samples were scored as: 0 = normal; 1 = soft, wet cement; 2 = watery feces; 

3 = mucoid diarrhea; and 4 = bloody diarrhea. FC levels were analyzed using a sandwich 

ELISA, a turbidimetric immunoassay and a point-of-care dipstick test. FC concentration were 

higher in colitis samples scoring 4 compared with ≤ 4 fecal scores using ELISA, and in feces 

scoring 3 and 4 than ≤ 1 using immunoturbidimetry. Regardless of the assay used, no 

differences in FC levels were found among fecal scores for enteritis samples. This initial data 

suggest that FC only peaks at detectable levels following colitis but not enteritis. Hence, this 

indicates its potential role as a biomarker of infectious colitis in pigs and possible support in 

judicious therapeutic interventions. 

 

 

Keywords: Enteric diseases, Intestinal health, B-cell pathways, Microbiome, Swine.  



 

 

 

RESUMO INTERPRETATIVO 

Colite associada a Brachyspira spp. e Salmonelose em suínos : novas abordagens e 

interações patógeno-hospedeiro 

Elaborado por Jéssica Barbosa e orientado por Vinícius de Souza Cantarelli 

A disenteria suína, a colite espiroquetal e a salmonelose suína são doenças entéricas 

importantes na suinocultura. Os prejuízos econômicos decorrem do aumento nos gastos com 

medicamentos, mortalidade e redução no desempenho dos animais. Embora vacinas vem sendo 

desenvolvidas, a mitigação dessas doenças ainda depende do uso de antibióticos. Visando 

desenvolver futuras ferramentas não antibióticas, neste trabalho buscamos compreender a 

interação que ocorre entre os patógenos causadores dessas enfermidades com a microbiota 

intestinal e a resposta de células B. Além disso avaliamos a utilidade de um biomarcador de 

inflamação intestinal nas fezes de suínos com disenteria suína e salmonelose. 

Experimento 1: Avaliamos se há diferença na microbiota fecal de suínos dois dias antes 

dos animais apresentarem diarreia com sangue, e no dia que os animais apresentam os sinais 

clínicos da disenteria suína. Dois dias antes da observação da doença, foram identificadas 

bactérias potencialmente associadas com proteção da mucosa intestinal contra a colonização da 

Brachyspira hyosydenteriae. Por outro lado, no dia em que os animais apresentaram diarreia 

com sangue, bactérias que provavelmente auxiliam na alteração do ambiente intestinal 

favorecendo a colonização e infecção pela B. hyosydenteriae foram identificadas. Em 

conclusão, existe diferença na composição da microbiota imediatamente antes e depois dos 

sinais clínicos da disenteria suína. Dessa forma, alguns grupos bacterianos podem ser 

investigados futuramente como possíveis biomarcadores para o tratamento e controle da doença 

na suinocultura. 

Experimento 2: Foi avaliada a resposta das células B expostas a B. hyodysenteriae, B. 

hampsonii (patogênica e não patogênica), B. pilosicoli, e S. Typhimurium. Apenas S. 

Typhimurium e LPS aumentaram a mortalidade de células B. B. pilosicoli diminuiu a expressão 

de genes relacionados ao desenvolvimento e ativação das células B comparado ao controle. 

Todos os outros patógenos aumentaram a expressão gênica de pelo menos um desses genes. 

Esses achados sugerem que, a B. pilosicoli não provoca uma resposta imediata de células B. 

Isso pode implicar no desenvolvimento de vacinas para seu controle. 

Experimento 3: Avaliamos a utilidade da calprotectina fecal (CF) como biomarcador 

de inflamação intestinal em amostras fecais de suínos infectados com B. hyodysenteriae (colite) 

ou S. Typhimurium (enterite). Na colite, os níveis de CF foram elevados em amostras fecais de 

escore fecal 4 (diarreia com sangue) em comparação com escore fecal 0 (normal), 1 (fezes 

macias), 2 (fezes com água) e 3 (fezes com muco). Não foram encontradas diferenças nos níveis 

de CF entre os escores fecais nas amostras de enterite. Diante desses resultados, podemos 

concluir que a CF fecal é um potencial biomarcador não invasivo útil para diagnosticar colite 

infecciosa em amostras fecais de suínos. Essa potencial ferramenta pode contribuir para uma 

abordagem antimicrobiana mais prudente e assertiva no cenário de redução e uso prudente de 

antimicrobianos. 

 



 

 

 

 

RESUMO GRÁFICO 

 
 

Três experimentos avaliaram a interação entre os patógenos mencionados acima, aos quais os antibióticos 

são amplamente aplicados em suínos, com a microbiota, a resposta suína de células B, e um biomarcador não 

invasivo de inflamação intestinal, respectivamente. Diante dos resultados, futuras estratégias poderão ser 

desenvolvidas para controlar as doenças e minimizar o uso de antibióticos.  

 

             Tese de  doutorado em Zootecnia na  UFLA, defendida em 25/05/2023. 



 

 

 

 

 

                                       INTERPRETIVE SUMMARY 

 

Brachyspira-associated colitis and salmonellosis in pigs: novel approaches and host-

pathogen interactions 

Designed by Jéssica Barbosa and supervised by Vinícius de Souza Cantarelli 

Swine dysentery, spirochetal colitis, and porcine salmonellosis are enteric diseases with 

global importance in the swine industry. The financial impact arises from increased production 

costs associated with treatment and mortality and retarded growth. Although vaccines have 

been developed, the mitigation of these diseases relies on antibiotics. Aiming to develop future 

non-antibiotic approaches to control these infections, we aimed to understand the interaction 

between the pathogens that cause these diseases with the intestinal microbiota, and B-cell 

response. Additionally, we evaluated the usefulness of a non-invasive biomarker in the feces of 

swine dysentery and salmonellosis affected pigs. 

Trial 1: We evaluated whether there is a difference in the fecal microbiota of swine two 

days before the animals have bloody diarrhea and on the day the animals show the clinical signs 

of swine dysentery (SD). Two days before disease observation, bacteria potentially associated 

with the protection of the intestinal mucosa against colonization by Brachyspira hyosydenteriae 

were identified. Moreover, on the day the pigs had bloody diarrhea, bacteria that probably help 

alter the intestinal environment, favoring colonization and infection by B. hyosydenteriae, were 

observed. There is a difference in the microbiota composition immediately before the clinical 

signs of SD. Thus, specific bacterial groups can be investigated as possible biomarkers to 

control the disease in swine herds.  

Trial 2: We investigated the response of B cells exposed to B. hyodysenteriae, B. 

hampsonii (pathogenic and non-pathogenic), B. pilosicoli, and S. Typhimurium. Only S. 

Typhimurium and LPS increased B-cell mortality after the exposure period. B. pilosicoli 

decreased expression of genes related to B-cell development and activation compared to 

control. On the other hand, all other pathogens increased the gene expression of these genes. 

Our findings suggest that, unlike other bacteria, B. pilosicoli does not elicit a B-cell response. 

This may imply the development of vaccines for its control.  

Trial 3: We assessed the usefulness of fecal calprotectin (FC) as a biomarker of 

intestinal inflammation in fecal samples from swine infected with B. hyodysenteriae (colitis) or 

S. Typhimurium (enteritis). In colitis, FC levels were greater in score 4 (bloody diarrhea) 

compared to fecal score 0 (normal), 1 (soft, wet cement), 2 (watery feces), and 3 (mucoid 

diarrhea). No differences in FC levels were found between fecal scores for enteritis samples. 

Given these results, we can conclude that FC may be a potentially useful non-invasive 

biomarker for diagnosing infectious colitis in swine fecal samples. This potential tool may 

direct a more assertive antimicrobial approach in the scenario of prudent and suppressing 

antibiotic usage. 



 

 

 

GRAPHICAL ABSTRACT 

 

Three trials evaluated the interaction among the above-mentioned pathogens, to which antibiotics are 

widely applied in pigs, with the microbiota, the porcine B-cell response, and a non-invasive biomarker of 

intestinal inflammation, respectively. Given the results, future strategies can be developed to control 

diseases and minimize antibiotic usage. 
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FIRST SECTION 

1 INTRODUCTION 

Grower-finisher infectious diarrhea is one of the main economic challenges in the swine 

industry, since it affects the optimal functioning of the gastrointestinal tract, compromising the 

performance, health, and welfare of the pigs (JACOBSON et al., 2003; PANAH et al., 2021). 

The financial impact arises from retarded growth, worse feed conversion ratio, and increased 

production costs associated with treatment and mortality (SJÖLUND; ZORIC; WALLGREN, 

2014). 

Swine dysentery (SD), spirochetal colitis (SC), and swine salmonellosis (SS) are among 

the most common diarrheic diseases affecting growing-finishing pigs worldwide, especially in 

the major pork producer countries (FUNK; GEBREYES, 2004; ALVAREZ-ORDÓÑEZ et al., 

2013). The aero-tolerant spirochetes Brachyspira hyodysenteriae, B. hampsonii and B. 

suanatina are associated with SD, leading to mucohemorragic diarrhea and colitis (TAYLOR; 

ALEXANDER, 1971; RÅSBÄCK et al., 2007; RUBIN et al., 2013) SC is caused by B. 

pilosicoli, characterized by mucoid, watery diarrhea and mild colitis (TAYLOR; SIMMONS; 

LAIRD, 1980). Salmonella enterica serovar Typhimurium leads to watery diarrhea, enteritis 

and dehydration in pigs, and its also a One Health concern associated with food-borne 

gastroenteritis in humans (HURD et al., 2001; EFSA, 2022). Despite the efforts for vaccine 

development against SD and SC (LA et al., 2019; CHRISTODOULIDES et al., 2022), and the 

improvement of available vaccines for salmonellosis (WALES; DAVIES, 2017), in practice, 

antibiotic therapy remains the major appliance for their mitigations (VAN DUIJKEREN et al., 

2014; TENG et al., 2022). 

It is well known that colonization of the intestine and development of disease by 

Brachyspira is influenced by complex interactions between the spirochaetes and the indigenous 

microbiota (WHIPP et al., 1979; COSTA et al., 2014; BURROUGH; ARRUDA; PLUMMER, 

2017). However, there is a gap in knowledge regarding what changes the intestinal microbiota 

undergoes immediately preceding the appearance of clinical signs due to B. hyodysenteriae 

colonization. The T-cell independent B-cell activation takes part in the early response against 

pathogens and vaccine efficacy (HAVENAR-DAUGHTON et al., 2018). Studies in humans 

and mice models have demonstrated that some pathogens can interact with B-cell, thus 

impairing the humoral response (CASTRO-EGUILUZ et al., 2009; GOENKA et al., 2012). 

Nevertheless, how the swine enteric pathogens Brachyspira spp. and Salmonella Typhimurium 

can interact with B-cell impairing its response is still unknown. 
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Understanding the pathogen-host interactions will provide further insights to clarify 

pathogenesis mechanisms, as well to support improvement and development of reliable 

preventative and control tools to mitigate enteric disease in swine operations. The knowledge 

provided in this work will be supported in the immediate future, especially in the effort to direct 

judicious therapeutic interventions. Thus, the work described in this thesis aimed to evaluate 

the host-pathogen-microbiome interactions of agents of grower-finisher diarrhea to which 

antibiotics are the main control tool used in commercial farms.  

2 LITERATURE REVIEW 

2.1 Swine dysentery and spirochetal colitis in pigs  

The Brachyspira genus comprises intestinal spirochaetes, belonging to the phylum 

Spirochaetes, class Spirochaetes, order Spirochaetales, being the only genus accounting for the 

family Brachyspiraceae (PASTER; DEWHIRST, 2000). In the large intestine, Brachyspira 

spp. colonizes specifically the cecum and colon, near the intestinal epithelium (STANTON, 

1997), and can belong to the indigenous microbiota in healthy pigs (HAAKE, 2009; 

PATTERSON et al., 2013). These species have been isolated from a broad spectrum of hosts, 

including pigs, poultry, rodents, dog, horse, and humans (STANTON, 2006). 

Brachyspira spp. are gram-negative bacteria, obligate anaerobe but oxygen tolerant, 

thin, helically coiled (spiral-shape), and motile (HOLT, 1978; PASTER; DEWHIRST, 2000). 

The intensity of β-hemolysis on blood-agar blood has been applied for its differentiation and to 

assess the development of disease (BURROUGH et al., 2012). B. hyodysenteriae, B. suanatina, 

and B. hampsonii develop strongly β-hemolysis  (CHANDER et al., 2012; MUSHTAQ et al., 

2015; MAHU et al., 2016). Whereas B. innocens, B. intermedia, B. murdochii, and B. pilosicoli 

are known as weak β-hemolytic spirochaetes (SAHEB; DAIGNEAULT-SYLVESTRE; 

PICARD, 1981; JENSEN; CHRISTENSEN; BOYE, 2010; PHILLIPS et al., 2010). Except for 

B. pilosicoli, all those weakly hemolytic Brachyspira spp. are indeed regarded mildly or non-

pathogenic (HAMPSON, 2018). In pigs, the main pathogenic Brachyspira species causing 

diarrhea are B. hyodysenteriae, B. hampsonii, and B. pilosicoli (HARRIS et al., 1972; 

TAYLOR; SIMMONS; LAIRD, 1980; CHANDER et al., 2012). Other species, including B. 

intermedia, B. murdochii, B. suaginata and non-pathogenic B. innocens have been also isolated, 

but are less relevant causing disease in pigs (RÅSBÄCK et al., 2007; PHILLIPS et al., 2010; 

MUSHTAQ et al., 2015). 
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2.1.1 Swine dysentery  

SD is one of the most production-limiting enteric disease affecting growing-finishing 

pigs worldwide. The financial impact concern is regarding poor feed conversion, medications 

costs, mortality, and animal welfare (WOOD; LYSONS, 1988; ÓZSVÁRI, 2017). It is 

characterized by mucohemorrhagic diarrhea and fibrinonecrotic colitis (TAYLOR; 

ALEXANDER, 1971; HARRIS et al., 1972). The first report was described in 1921, when SD 

was experimentally reproduced (WHITING; SPRAY; DOYLE, 1921). Despite that, the 

causative agent of SD was confirmed years later, and first named Treponema hyodysenteriae 

(TAYLOR; ALEXANDER, 1971; HARRIS et al., 1972). Thereafter, the spirochetes were 

renamed Serpula and Serpulina, respectively (STANTON et al., 1991; STANTON, 1992). 

Since then, the causative agent has been classified as Brachyspira spp. (OCHIAI; ADACHI; 

MORI, 1997). 

The primary agent of SD, B. hyodysenteriae, is a gram-negative spirochete, with 8-10 

µm in length, 0.3–0.4 μm in diameter, strongly β-haemolytic, aerotolerant and positive indole 

production (OCHIAI; ADACHI; MORI, 1997). Lately, a novel strongly β-haemolytic 

characterized as B. hampsonii was found in outbreaks in Canada, United States, and Europe 

causing clinical disease indistinguishable from SD (HARDING et al., 2010; CHANDER et al., 

2012; MAHU et al., 2014). Experimental inoculations have been confirmed the similarity by 

reproducing mucohemorrhagic diarrhea and colitis in pigs challenged with B. hampsonii 

isolates (BURROUGH et al., 2012a; COSTA et al., 2014; RUBIN et al., 2013). 

2.1.1.1 Epidemiology  

SD has a worldwide distribution, occurring mainly in countries with a higher density of 

pig production. Around the 90s, its prevalence drastically decreased due to biosecurity 

improvements and global swine industry technification (MIRAJKAR; GEBHART, 2014). 

Recently, SD has re-emerged in many countries, including Canada, United States, Brazil, 

European, and Asian countries (HARDING et al., 2010; BURROUGH, 2013a; KAJIWARA et 

al., 2016; LÖBERT et al., 2016; SATO et al., 2022). SD can affect all ages, but the main target 

is growing and finishing pigs at approximately 8–26 weeks (BURROUGH, 2017). The 

prevalence ranging from 0% to 40%, morbidity reaching 90%, and a mortality rate of 50-90% 

has been reported. Onset has been reported mainly after removing antibiotics, occurring 

cyclically in the herd (ALVAREZ-ORDÓÑEZ et al., 2013).  
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The transmission occurs via the fecal-oral route by ingesting feces from infected 

animals. Moreover, asymptomatic animals are an important source of the organism into the 

environment. Contaminated clothes, footwear, trucks, and other fomites are also good sources 

of spirochaetes (HAMPSON; BURROUGH, 2019). Apart from the etiological agent, risk 

factors such as stress, diet, vectors, the dosage of the agent, and virulence of strains have been 

associated with disease condition (ZEEH; VIDONDO; NATHUES, 2020). Poor husbandry 

practice and intestinal microbiota may influence the outcome of infection (WHIPP et al., 1979; 

ALVAREZ-ORDÓÑEZ et al., 2013; COSTA et al., 2014b). 

2.1.1.2 Pathogenesis and clinical signs  

As a multifactorial disease, the pathogenesis of SD is complex and has not yet been fully 

elucidated. B. hyodysenteriae colonize the mucosal surface of the cecum and colon, and 

subsequently settles between the epithelial and goblet cells (GLOCK; HARRIS; KLUGE, 1974; 

JOENS et al., 1981). Also, the pathogen can establish within crypts and on the luminal surface 

(KENNEDY; STRAFUSS, 1976). Whether its attachment and penetration are essential for 

pathogenesis has not yet been fully clarified (GLOCK; HARRIS; KLUGE, 1974; TEIGE et al., 

1981). Virulence factors, including mucus chemotaxis, motility, adherence, hemolysin, and 

endotoxic activity of lipooligosaccharides (LOS), might be the main actors for disease 

development (MILNER; SELLWOOD, 1994; KENNEDY; YANCEY, 1996; BELLGARD et 

al., 2009).  

It has been shown that NADH activity contributes to pathogen colonization and 

pathogenic ability, as it consumes oxygen and protects B. hyodysenteriae cells from oxygen 

toxicity (STANTON et al., 1999). The periplasmic flagellar activity assists B. hyodysenteriae 

corkscrew-like motility for penetration and colonization of the mucus layer. The flaA and flaB 

genes were shown to be involved in this function, since lowered mobility and colonization were 

observed in mutants lacking flaA and flaB (KENNEDY; ROSEY; YANCEY, 1997). LOS are 

present on the outer envelope of the Brachyspira spp. and has also been implicated as a potential 

virulence factor (NUESSEN; JOENS; GLOCK, 1983; GREER; WANNEMUEHLER, 1989), 

mainly inducing local inflammation in the colon (JOENS et al., 1985; HALTER; JOENS, 

1988).  

The production of hemolysins has been considered the main virulence factor of B. 

hyodysenteriae. As previously mentioned, the intensity of hemolysis has been used to 

differentiate pathogenic from non-pathogenic Brachyspira spp., and the greater colonic 

inflammation generally is associated with strongly β-hemolytic strains (BURROUGH et al., 
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2012). To date, seven potential hemolysin-encoding genes have been identified: tlyA, tlyB, 

tlyC, and the acyl carrier protein containing β-hemolysin (hylA) (TER HUURNE et al., 1994; 

HSU et al., 2001), genes encoding putative hemolysin III (BHWA1_00446 and 

BHWA1_01870) and a putative hemolysin CBS domain (BHWA1_00587) (BELLGARD et 

al., 2009). Although in vivo assays have confirmed the involvement of the identified hemolysins 

in the occurrence of SD, the pathogenic activity of those remains unclear (TER HUURNE et 

al., 1992; HYATT et al., 1994).  

The strict association with the mucus present on the surface of the epithelium is 

important for Brachyspira infection (KENNEDY et al., 1988). B. hyodysenteriae were found 

to regulate the mucin composition in the colon, altering the mucus layer organization with lacks 

striations, which may increase binding sites for the spirochetes (QUINTANA-HAYASHI et al., 

2015, 2019; VENKATAKRISHNAN et al., 2017; LIN et al., 2023). This structural 

disorganization at the early infection leads to reduced expression of sulfated mucins, 

sialomucins, and mucigen within globet cells at the base of crypts. Hence, further excessive and 

remarkable mucin accumulation is observed at the apex of the spiral colon (WILCOCK; 

OLANDER, 1979; WILBERTS et al., 2014a).  

Investigation in inoculated pigs with B. hyodysenteriae or B. hampsonii has shown that 

these changes are associated with enhanced gene expression encoding the gel-forming mucin 

MUC5AC via de novo synthesis (WILBERTS et al., 2014a; QUINTANA-HAYASHI et al., 

2015; LIN et al., 2023). Curiously, unlike MUC2, the expression of MUC5AC is not 

constitutively detected in the colon of healthy pigs (QUINTANA-HAYASHI et al., 2015; 

USHIO et al., 2020). The presence of neutrophilic infiltration and the expression of pro-

inflammatory cytokine IL-1β and IL-17 has been implicated in MUC5AC stimulation (KIM et 

al., 2002; WILBERTS et al., 2014a; LIN; ARRUDA; BURROUGH, 2021). 

At the early stage of the disease, superficial mucosal necrosis, vascular congestion and 

dilatation, abundant mucus accumulation, edema, and neutrophils in the lamina propria and 

crypts can be observed (TEIGE; NORDSTOGA, 1979; WILCOCK; OLANDER, 1979). As the 

disease progresses, exfoliation of the epithelium and the blood cells are remarkable into the 

lumen, leading to fibrinohemorrhagic colitis (GLOCK; HARRIS; KLUGE, 1974; WILBERTS 

et al., 2014a). The gross lesions can be multifocal and are limited to the cecum and colon. Thin, 

fluid-filled colon with serous hyperemia and mesocolon edema, associated with mucus, 

hemorrhage, fibrinous exudate, and mucohemorragic feces, are typical lesions at the necropsy 

(BURROUGH, 2017).  
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As a result of this injury, diarrhea is driven by the complete abolition of water, sodium, 

and chloride electrolytes absorption due to failures in membrane transport processes and 

epithelial destruction (ARGENZIO; WHIPP; GLOCK, 1980). Excessive mucin production may 

also be involved in increased sodium and potassium (WILCOCK; OLANDER, 1979). Diarrhea 

usually starts with moderate mucus, watery feces and progress to mucohemorragic diarrhea 

(HAMPSON; BURROUGH, 2019).  

At experimental conditions, the onset of clinical signs is observed at 7 – 10 days post-

inoculation with B. hyodysenteriae (WILCOCK; OLANDER, 1979), and between 4-5 days 

post-challenge for B. hampsonii (RUBIN et al., 2013b; WILBERTS et al., 2014b). Spirochetes 

may be found in the feces 1- 4 days before the diarrhea onset (KINYON; HARRIS; GLOCK, 

1977; COSTA et al., 2014a). The disease usually spreads gradually; the incubation period 

ranges from 4 days to 3 months. The onset between 10 to 14 days in naturally exposed pigs is 

reported (HAMPSON; BURROUGH, 2019). The clinical signs are associated with 

dehydration, including weakness, depression, sunken eyes, weight loss, and hollow flanks. 

Metabolic acidosis and hyperkalemia increase dehydration, and mortality may occur in severely 

affected pigs (HAMPSON; BURROUGH, 2019). 

2.1.1.3 Influence of microbiota on swine dysentery onset 

 The synergistic association between intestinal microbiota and spirochetes has been 

extensively investigated. The first studies dated from the 70s have shown that B. hyodysenteriae 

requires the presence at least of one microorganism for the disease expression (MEYER; 

SIMON; BYERLY, 1975; HARRIS et al., 1978; WHIPP et al., 1979; WANNEMUEHLER; 

DORN, 2003). Using the gnotobiotic pigs model, colonic lesions characteristic of SD were 

reported when the animals were co-inoculated with  B. hyodysenteriae, Fusobacterium 

necrophorum, and Bacteroides vulgatus (HARRIS et al., 1978). On the other hand, gnotobiotic 

pigs inoculated with B. hyodysenteriae alone failed to reproduce the disease (MEYER; SIMON; 

BYERLY, 1974; HARRIS et al., 1978). The same was noticed in pigs co-inoculated with B. 

hyodysenteriae, F. necrophorum, B. vulgatus, a Clostridium species, or Listeria denitrificans, 

but not with the spirochete alone (WHIPP et al., 1979). Indeed, this initial discovery opened the 

door for recent investigations into the relationship between the indigenous microbiota and 

Brachyspira spp. (PALLERONI, 1997; NOCKER; BURR; CAMPER, 2007). Nevertheless, the 

development of culture-independent methods in the 1980s provided a new perspective on the 

composition, distribution, diversity, and host-related functions of the microbiota (PACE et al., 

1986). 
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Recent studies applying high throughput sequencing methods have demonstrated a 

lower Bacteroidetes:Firmicutes ratio linked with mucohaemorrhagic diarrhea clinical signs 

after experimental inoculation (COSTA et al., 2014b). Further, differences in microbial profile 

in pigs inoculated with B. hyodysenteriae or B. hampsonii that develop SD, compared with non-

developed SD were assessed. Campylobacter, Mogibacterium, Brachyspira, and Desulfovibrio 

spp. were differential features in SD-pigs, while Bifidobacterium spp. and Lactobacillus were 

predominant in pigs without colitis (BURROUGH; ARRUDA; PLUMMER, 2017). 

Interestingly, the genera found in SD-pigs have been associated with PEDv diarrhea (KOH et 

al., 2015), colitis in humans (ROWAN et al., 2010), and the degradation of sulfate mucins 

(COUTINHO et al., 2017). Thus, it is evident that specific microorganisms are able to interact 

with spirochaetes, reflecting intestinal dysbiosis and diarrhea onset. 

Diet is another component explored in the occurrence of SD (SIBA; PETHICK; 

HAMPSON, 1996; PLUSKE et al., 1998; HANSEN et al., 2010, 2011; HELM et al., 2020). 

Nevertheless, contradictory results regarding its influence have been reported (KIRKWOOD et 

al., 2000; LINDECRONA et al., 2003; LEE et al., 2022). On the influence of diet on the 

intestinal microbiota and Brachyspira spp. interaction, lowly fermentable fiber (20% corn 

distillers dried grain with solubles, DDGS), induced an increased in Shuttleworthia, 

Ruminococcus torques, and Mogibacterium, which potentially benefit B. hyodysenteriae 

colonization (HELM; GABLER; BURROUGH, 2021). Contrariwise, highly fermentable fiber, 

specifically promoting acid-lactic and butyric acid-producing bacteria, has been associated with 

protection against SD. For example, pigs fed a fructan-rich diet had higher proportions of 

Bifidobacteria and Megasphaera that inhibit colonization of B. hyodysenteriae compared to a 

resistant carbohydrate diet (MØLBAK et al., 2007).  

 

2.1.2 Spirochetal colitis  

In pigs, the disease caused by B. pilosicoli is called porcine colonic spirochetosis or 

porcine intestinal spirochetosis (PIS). The first description of B. pilosicoli occurred in the 1980s 

after a weakly hemolytic strain (P43/6/78) was isolated in feces from pigs (TAYLOR; 

SIMMONS; LAIRD, 1980). Since then, the spirochete has been isolated from humans 

(HARLAND; LEE, 1967; HOVIND-HOUGEN et al., 1982), and animals, including chickens, 

ducks, turkeys, rodents, dogs, and birds (DAVELAAR et al., 1986; OXBERRY; TROTT; 

INFECTION, 1998; SHIVAPRASAD; DISEASES, 2005; BACKHANS; JOHANSSON, 

2010). B. pilosicoli has the same phenotypic characteristics as other Brachyspira spp. It has two 
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sets of periplasmic flagella conferring corkscrew-like motility, with 5–11 μm in length and 0.2–

0.4 μm in width (HAMPSON; BURROUGH, 2019). The fastidious slow growth in anaerobic 

conditions justifies the 3 to 5 days to form a zone of weak hemolysis on the surface of blood 

agar (BROOKE et al., 2000). 

PIS has been reported in many countries, but epidemiological studies about its 

prevalence are sparse. In Danish finishing herds, its prevalence ranged from 5-10%, isolated in 

15 of 79 herds (19.0%) (STEGE et al., 2000). In Poland, B. pilosicoli was detected in 13.7% 

(13/95) of herds, considering a low level of occurrence (DORS; CZYŻEWSKA-DORS; 

WOŹNIAKOWSKI, 2019). Herds with higher PIS cases also have been associated with mixed 

diarrhea infections, compared with farms without co-diarrhea occurrence (MØLLER et al., 

1998; STEGE et al., 2001). In German, B. pilosicoli were found positive in 73.4% of farms with 

L. intracellularis and B. hyodysenteriae mixed infections (REINER et al., 2011). 

As for SD, PIS also affects growing and finishing pigs. However, its clinical 

manifestation is different from that observed in SD (HAMPSON; BURROUGH, 2019). The 

spirochete is transmitted orally. Carriers, feral pigs, and other animals are sources of the 

introduction of infection (OXBERRY; TROTT; INFECTION, 1998; PHILLIPS et al., 2009). 

Moreover, contaminated fomites and effluent pond water were assigned as an infection source 

(OXBERRY; HAMPSON, 2003). Changes in diet, antimicrobials removal, or other stress are 

critical for the appearance of clinical cases in weaned, growing and finishing pigs (NARESH; 

HAMPSON, 2011; HAMPSON, 2018). 

2.1.2.1 Pathogenesis  

The complete pathogenesis of spirochetal colitis remains unclear, and few disease 

outcome-related features have been identified. Brachyspira species are actively mobile due to 

periplasmic flagella that drive the “corkscrew-like” twisting motility to penetrate the mucus 

layer (CHARON et al., 1992). The swimming speed and wave frequency showed in a two-

directional-illuminated dark-field microscopy is one of the factors that sustain B. pilosicoli in a 

viscous environment (NAKAMURA et al., 2006). The interaction between membrane 

lipoproteins, such as variable surface proteins (Vsp) and specific receptors, contributes to its 

attachment to the luminal surface of mature apical enterocytes, forming the “false brush border” 

(TROTT; HUXTABLE; HAMPSON, 1996; TROTT et al., 2001). The production of enzymes 

from the sialidase family-like proteins (nanA, BP951000_2021, BP951000_2022, and 

BP951000_2023) (WANCHANTHUEK et al., 2010) and, among others, subtilisin-like serine 
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protease (DASSANAYAKE et al., 2004), trigger the hydrolyze of the colonic mucus layer 

allowing B. pilosicoli penetration.  

Once attached to the surface of the enterocytes, the pathogen triggers colitis and 

diarrhea. The diarrhea onset has been associated with physical disruption of the normal water 

and electrolyte absorption process caused by massive colonization of the spirochete on the 

colonic epithelial surface (RODGERS et al., 1986; GAD et al., 2010). Under experimental 

conditions, the incubation period can reach 20 days, and diarrhea may last from 2 to 7 days, 

with pathogen shedding occurring within 2 to 7 days (HAMPSON, 2018). Pigs have been 

shown to have moderate colitis and watery to mucoid diarrhea. The presence of mucus, rare 

flecks of blood, and color alterations of feces to green or brown have been frequently observed 

(HAMPSON; BURROUGH, 2019). The disease will reflect a significant loss of performance 

that leads to poor feed conversion rate and lower slaughter weight (THOMSON; SMITH; 

MURRAY, 1998). 

In naturally or inoculated pigs, macroscopic lesions are attributed to the cecum and 

colon. The presence of fluid and edema on the serous surface is observed, accompanied by 

increased mesenteric lymph nodes. Likewise, mild congestion and hyperemia of the mucosa, 

mucoid content, and necrotic erosions may appear (JENSEN; BOYE; MØLLER, 2004; 

HAMPSON, 2018). Overall at the microscopy, thickening, hyperemia, and edema of the 

mucosa, dilation, and elongation of the crypts with neutrophilic infiltrates and lymphocytes in 

the lamina propria are observed mainly in the mucosa and submucosa layer (THOMSON et al., 

1997; DUHAMEL, 2001). 

2.1.3 Swine dysentery and spirochetal diagnosis  

The observation of clinical signs associated with macroscopic changes and histological 

findings will determine the success of the final diagnosis. Importantly, Lawsonia 

intracellularis, Salmonella spp., Escherichia coli, Clostridium perfringens type C, and 

Trichuris suis are differential diagnoses for Brachyspira spp. infections (HAMPSON; 

BURROUGH, 2019).  

Traditional bacterial culture is the gold standard for diagnosing of SD and PIS. 

Brachyspira spp. has a fastidious growth, and are isolated on a selective blood agar medium, 

requiring an anaerobic environment at 42ºC for two - four days (STANTON; LEBO, 1988). In 

histological sections, Warthin-Starry silver staining and immunohistochemistry (IHC) 

techniques are often used to assess the presence of Brachyspira spp. (PAULOVICH et al., 2004; 

BURROUGH et al., 2012). Fluorescent in situ hybridization (ISH) using molecular probes 
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targeting DNA or RNA on formalin-fixed tissue can achieve higher sensitivity and provide 

rapid identification than culture (BURROUGH et al., 2013).  

PCR-based methods have been developed and are routinely used to confirm diagnostic 

culture isolates. The multiplex or duplex PCR detecting different spirochetes has been an 

advantageous method for quantification in pigs (BORGSTRÖM et al., 2017). The common 

targets for Brachyspira spp. are the 16S rRNA, 23S rRNA and nox gene encoding NADH 

oxidase (ROHDE; HABIGHORST-BLOME, 2012; BORGSTRÖM et al., 2017; ROJAS et al., 

2017). Despite that, the cpn60 gene has been shown to be more phylogenetically informative 

than 16S rRNA and nox gene (LINKS et al., 2012; ROHDE et al., 2019). Recently, a novel 

TaqMan 5-plex real-time PCR targeting cpn60 and nox gene was developed to identify B. 

hyodysenteriae, B. pilosicoli, B. suanatina, and B. hampsonii (SCHERRER; STEPHAN, 2021). 

Although serological tests for monitoring herds exposed to B. hyodysenteriae or B. pilosicoli 

has been described (SONG; FREY; HAMPSON, 2012; SONG et al., 2015; HAMPSON et al., 

2016), the vast serodiversity and reactivity among Brachyspira species is the major gap of 

serology with high sensitivity and specificity for SD diagnosing (HERBST et al., 2017).  

2.1.4 Treatment and control measures 

Improvements in management and biosecurity are the main key factor in reducing the 

exposure risks for SD and PIS in swine herds. When adequately implemented, it can control 

and prevent the disease from spreading within and between farms (ALVAREZ-ORDÓÑEZ et 

al., 2013; BURROUGH, 2013b; FABLET, 2018). Elimination by total or partial depopulation 

associated with biosecurity measures has been implemented (NEIRYNCK et al., 2020).  

Treatments relies on antimicrobials. Pleuromutilins (tiamulin and valnemulin), 

lincomycin, and macrolides (tylosin and tylvalosin) has been used (VAN DUIJKEREN et al., 

2014; HAMPSON; BURROUGH, 2019). Tiamulin, valnemulin, carbadox, dimetridazole, and 

lincomycin are particularly important and used in different countries (PRINGLE; LANDÉN; 

FRANKLIN, 2006; PRINGLE et al., 2012). However, the resistance of B. hyodysenteriae has 

increased for tiamulin, lincomycin and tylosin (HAMPSON et al., 2019; STUBBERFIELD et 

al., 2020). Decreased susceptibility to lincosamides and macrolides has been documented for 

B. pilosicoli (ARNOLD et al., 2022). 

Multiple vaccines has been evaluated to control SD. Among them, attenuated bacterins 

(HUDSON et al., 1976; HAMPSON; ROBERTSON; MHOMA, 1993; DIEGO et al., 1995), 

avirulent vaccines (MAHU et al., 2017; LA et al., 2019), subunits and recombinant vaccines 

(LA et al., 2004; HOLDEN; COLOE; SMOOKER, 2008), and a reverse method approach 
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(SONG et al., 2009; CHRISTODOULIDES et al., 2022) has been assessed. To control PIS 

infection, recombinant vaccines (MOVAHEDI; HAMPSON, 2007, 2010), inactivated bacterins 

(HAMPSON et al., 2000), and subunit vaccines (CASAS et al., 2017) has been explored. 

Despite extensive efforts, only partial cross-protection against strains of different serogroups 

has been reported (HAMPSON; BURROUGH, 2019), and to date, commercial vaccines are not 

available yet. 

2.2 Salmonellosis associated with Salmonella Typhimurium in pigs 

Given the significant number of foodborne cases and outbreaks yearly, Salmonellosis is 

a critical topic in world public health. In this perspective, Salmonella enterica serovar 

Typhimurium is highlighted due to its wide distribution in swine production and zoonotic 

importance (DEANE et al., 2022; EFSA, 2022). Moreover, the One-Health concern has been 

increasingly associated with the emergence of multidrug-resistant Salmonella spp. strains in the 

pork chain to the highest priority clinical human antimicrobials (JIANG et al., 2019; LAUTERI 

et al., 2022).  

Salmonella enterica belongs to the family Enterobacteriaceae. It is a gram-negative 

rod-shaped bacteria (2–5 µm long by 0.5–1.5 µm wide), non-lactose fermenting, and facultative 

anaerobic intracellular, with a motile drive by peritrichous flagella (PENNER, 1988; FINIAY; 

FALKOW, 1989). More than 2600 serovars have been registered, and Salmonella can be 

isolated from the intestinal tract of a wide range of farm and wild animals and humans 

(CHAUDHURI et al., 2013; HORTON et al., 2013; CAMPOS et al., 2019). 

 S. Typhimurium has become endemic in swine herds and isolated from pigs worldwide, 

especially in the major swine-producing countries (MORNINGSTAR-SHAW et al., 2016; DOS 

et al., 2019; FERRARI et al., 2019). The fecal-oral route is the main route of transmission. Low 

biosecurity/hygiene (BELOEIL et al., 2007), contaminated feed, equipment, fomites, rodents, 

pets, and wild birds infected are risk factors for infection in swine herds. Nevertheless, 

subclinical carriers persistently infected are the most significant source of infection and 

dissemination (BOYEN et al., 2008), shedding Salmonella under stressful situations and being 

a contamination risk at slaughter (HURD et al., 2001; MASSACCI et al., 2020). 

2.2.1 Pathogenesis  

The pathogenesis of Salmonella Typhimurium infections is complex. The infection 

process involves establishment in the intestinal lumen, invasion of epithelial and other cells, 

and subsequent dissemination to lymph nodes and organs (MARTINS et al., 2013). To establish 
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infection, S. Typhimurium has clever strategies to survive at low stomach pH levels and reach 

the intestine. Its acid tolerance response (ATR) mechanism given by a pH homeostasis system 

and acid shock proteins (FOSTER, 1993; AUDIA; WEBB; FOSTER, 2001), along with stress, 

may ensure its successful invasion into the intestinal mucosa of the distal parts of the intestine 

(MIKKELSEN et al., 2004; RYCHLIK; BARROW, 2005). 

Virulence genes located at Salmonella pathogenicity islands (SPI) play a significant role 

in cell invasion and intracellular pathogenesis (MARCUS et al., 2000). At least 12 SPI have 

already been characterized, encoding genes involved in invasion and survival in epithelial cells, 

triggering fluid secretion, invasion and survival in macrophages, and protection against 

oxidative explosion (HENSEL, 2004; EHRBAR; HARDT, 2005; GERLACH; 

TIERARZTLICHE, 2007; RUSHING; MICROBIOLOGY, 2011). One of the most important 

virulent factors is the expression of many fimbrial adhesins, which allow Salmonella attachment 

to the apical membrane of enterocytes and other cells (BÄUMLER; TSOLIS; HEFFRON, 

1997; VAN DER VELDEN et al., 1998; REHMAN et al., 2019). The presence of 

lipopolysaccharide (LPS), the expression of invasins, and the Vi antigen are determinants of 

virulence that help in its survival and intracellular replication (VIRLOGEUX-PAYANT; 

POPOFF, 1996; HUANG; DUPONT, 2005). 

There are several routes for the dissemination of Salmonella typhimurium, including  

microfold cells (M cells), epithelial cells, macrophages, and dendritic cells (LI, 2022). The 

Peyer’s patches have been reported as the main portal of the bacteria entry into the submucosa 

(JONES; GHORI; FALKOW, 1994; SCHAUSER; OLSEN; LARSSON, 2004). The pathogen 

migration will be driven by monocyte-derived cells in the gut-associated lymphoid tissue. This 

allows its dissemination through the Peyer’s patches (PP) and mesenteric lymph nodes (MLN) 

(TAM et al., 2008). Producing cytokines by innate immune cells into the invasion site will be 

essential (ECKMANN; KAGNOFF, 2001). However, Salmonella has strategies to evade the 

innate and adaptive immune response of the host, allowing its survival and spread (BROZ; 

OHLSON; MONACK, 2012). Thus, the pathogen can also reach systemic organs such as the 

liver, spleen, and hematogenous routes exploiting migratory dendritic cells (CHEMINAY et 

al., 2002). 

It has been shown that within a few hours of oral inoculation, S. Typhimurium and other 

serotypes can be observed and detected in high concentrations within enterocytes, cytoplasm, 

lymph nodes, liver, spleen, intestinal contents, and feces (HURD et al., 2001; LOYNACHAN 

et al., 2004). Epithelial damage and inflammation at the ileum mucosa can be observed a few 

hours after ingestion (COLLADO-ROMERO et al., 2012). The interaction between SPI-1 type 
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three secretion system (T3SS), IL-8 cytokine, and Salmonella B external proteins (SopB) is 

crucial for the diarrhea onset. During the epithelial invasion, the SIP-1 effector SipA protein 

triggers neutrophil recruitment following IL-8 release, enhancing epithelial inflammation and 

tissue damage  (MCCORMICK et al., 1995; UTHE et al., 2007; VOLF et al., 2007). Through 

the intracellular release of SopB and consequent increase in intracellular concentrations of 

inositol 1,4,5,6-tetrakisphosphate (Ins(1,4,5,6)-P4), chloride secretion increases contributing to 

the development of diarrhea (NORRIS et al., 1998; MARCUS et al., 2002; DRECKTRAH et 

al., 2005). 

Clinical symptomatology of S. Typhimurium course with the development of 

enterocolitis associated with watery diarrhea, without blood or mucus. Pigs can be febrile, 

prostrated, dehydrated with anorexia transient and decreased feed intake. Furthermore, an 

increase in S. Typhimurium shedding in feces is observed (RODRIGUES et al., 2021). Diarrhea 

usually lasts three to seven days for individual pigs, and the disease may spread within a few 

days. The low mortality is given by the rapid clinical recovery of most pigs, and intermittent 

shedding for at least five months has been reported for remaining carriers (GRIFFITH; 

CARLSON; KRULL, 2019). Classical macroscopic lesions are thickened turgid and hyperemic 

intestine walls, with pseudomembranes and adherent yellow-tan fibrinonecrotic exudate. The 

chronicity of the disease leads to button ulcers in the spiral colon. Mesenteric lymph nodes are 

dilated and inflamed (GRIFFITH; CARLSON; KRULL, 2019). 

2.2.2 Diagnosis, treatment and control  

Despite the availability of rapid molecular approaches, bacteriological methods 

associated with macroscopic lesions are still the main diagnostic tool for Salmonellosis. A pool 

of ileocecal lymphnodes, ileum, and colon may be satisfactory for isolation in active cases 

(GRIFFITH; CARLSON; KRULL, 2019). Recently a new multiplex PCR assay was validated 

to differentiate S. Typhimurium from Salmonella 1,4,[5],12:I:, targeting the fljB-hin region and 

mdh gene (HONG et al., 2023). Serology based on ELISA test using LPS antigen and/or meat 

juice to detect antibodies has been described as a surveillance approach (PROUX et al., 2000; 

SZABÓ et al., 2008).  

Controlling Salmonella generally requires multiple efforts. Preventing Salmonella from 

entering the farm and reducing the number of infected animals by following basic biosecurity 

and management practices, results in the low spread of the disease (VIDIC et al., 2015). 

Prophylactic use of antimicrobials is necessary for controlling Salmonella outbreaks and 

spreading among herds. As previously mentioned, the emergence of swine multidrug resistance 
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for mainly clinical antimicrobials for humans has become a worldwide concern 

(MARCHELLO; CARR; CRUMP, 2020; ROASTO et al., 2023). Salmonella serotypes 

resistant to quinolones and beta-lactams was isolated from slaughtered pigs (JIANG et al., 

2019). Salmonella resistant to cephalosporin without previous use was isolated from piglets 

(CAMERON-VEAS et al., 2018). Moreover, isolates from pigs with diarrhea were resistant to 

ampicillin, sulfamethoxazole, and tetracycline (SU et al., 2018). 

So far, commercial vaccines against Salmonella targeting sows (SMITH et al., 2018; 

PEETERS et al., 2020; VAN DER WOLF et al., 2021), piglets (HUSA et al., 2009; FARZAN; 

FRIENDSHIP, 2010; MOURA et al., 2021; SCHMIDT et al., 2021), or fattening pigs  

(DENAGAMAGE et al., 2007; PEETERS et al., 2020) are available in many countries, 

focusing not only in preventing clinical salmonellosis but also in decrease shedding and 

contamination of carcasses at slaughter. Despite the efforts, cross-protection induction between 

different serovars is still challenging in vaccine development. 

2.3 Activation of T-cell-independent B-cell response against pathogens 

The art of differentiating into long-lived memory or antigen-specific immunoglobulin 

(Ig)-producing plasma cells makes B-cell lymphocytes at the centre of the adaptive humoral 

immune response (HOFFMAN; LAKKIS; CHALASANI, 2016). These functions highlight the 

role of B cells in protective immunity against reinfection and in vaccine response (HAVENAR-

DAUGHTON et al., 2018). Apart from their primary role, mature B cells are professional 

antigen-presenting cells (APCs) (CLARK et al., 2004; HUA; HOU, 2020). Moreover, through 

cytokine production, B-cells can regulate the route of immune response in antibody-

independent mechanisms (LUND, 2008). B-cells can express a vast number of intra and 

extracellular receptors, including B-cell receptor (BCR), Toll-like receptors (TLRs), dectin-1, 

and complement receptors (CR1 [CD35], CR2 [CD21]), capable of recognizing and uptake 

bacterial antigens (CASTAÑEDA-SÁNCHEZ et al., 2017). These receptors operate as a cell-

intrinsic bridge between innate and adaptive immune mechanisms (RAWLINGS et al., 2012; 

BUCHTA; BISHOP, 2014).  

T cell-independent (TI) B-cell response is critical for early protection against pathogen 

invasion (FAGARASAN; HONJO, 2000). Non-proteinaceous antigens, including bacterial 

polysaccharides and lipopolysaccharide structures or epitopes of the viral particle, mediate 

extensive cross-linking of antigen receptors (VOS et al., 2000). Consequently, there is 

stimulation and intense production of low-affinity antibodies by B-1 and marginal zone B cells, 

mostly belonging to the IgM and no class-switched (BOES et al., 2000; EHRENSTEIN; 
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NOTLEY, 2010). Signal transduction via BCR is critical for TI immune response. The cross-

linking of BCR by multivalent antigens induces a variety of complex signaling cascades, 

resulting in the regulation of gene expression and cytoskeleton reorganization. Therefore, 

influencing the B-cell fate within germinal centers (Figure 1) (PIERCE; LIU, 2010; KIM et al., 

2019).  

The BCR comprises a membrane-bound immunoglobulin (Ig) with two heavy (H) and 

two light (L) chains, and the heterodimeric signaling subunit Ig-α/Ig-β (CD79a/CD79b) 

(RETH; WIENANDS, 1997). Each CD79a and CD79b contains, at the basis of their aminoacids 

sequence in the cytoplasmic tails, an immunoreceptor tyrosine-based activation motif (ITAM), 

which is crucial for the B-cell development and maturation process (RETH, 1989; KRAUS et 

al., 2004). Upon BCR-antigen crosslinking, several signaling cascades are initiated by the 

proximal kinase Lyn, which belongs to the Src-family tyrosine kinase (SFK). Lyn 

phosphorylates CD79a/CD79b ITAMs, thereby creating docking sites for the recruitment and 

activation of splenic tyrosine kinase (Syk) (YAMANASHI et al., 1991; FÜTTERER et al., 

1998; XU et al., 2005; GEAHLEN, 2009). Syk interacts with the ITAM motifs amplifying the 

BCR signal (ROLLI et al., 2002). The ITAM/Syk complex leads to the phosphorylation and 

activation of downstream molecular pathways, including SH2 domain-containing leukocyte 

protein (SLP-65/BLNK), Bruton’s tyrosine kinase (Btk), phospholipase C gamma 2 (PLCγ2), 

and phosphoinositide 3-kinase (PI3K) (NIIRO; CLARK, 2002; DEANE; FRUMAN, 2004).  

Many of these downstream signaling molecules function as calcium (Ca2+) signals, 

influencing Ca2+ cytosolic alterations. Ca2+ is crucial for the development and function of B 

cells, working as a universal cytosolic messenger in a range of intracellular processes, including 

transcription factors, protein kinase, mitochondrial physiology, apoptosis, cell adhesion, and 

migration (SCHARENBERG; HUMPHRIES; RAWLINGS, 2007). The SLP65/BLNK is 

required for Ca2+ mobilization in activated B cells. This adaptor protein organizes the B-cell 

calcium signalosome, thus promoting Ca2+ release and B-cell differentiation (CHIU et al., 2002; 

KULATHU et al., 2008). The PLCγ2 and other important surface receptors influence Ca2+ 

signaling alterations through the production and accumulation of the second messenger inositol 

3,4,5-trisphosphate (IP3) (CAHALAN; WULFF; CHANDY, 2001; KIM et al., 2019). PLCγ2  

phosphorylation results in hydrolysis of PI(4,5)P2 to IP3 and diacylglycerol (DAG), which 

trigger Ca2+ influx from endoplasmic reticulum and protein kinase C (PKC) activation, 

respectively (LI et al., 1997; KUROSAKI et al., 2000; WERNER; HOBEIKA; JUMAA, 2010). 

PLCγ2 phosphorylated also stimulates MAPK and NF-κB pathways, resulting in B-cell 

proliferation, differentiation or quiescence (PETRO; KHAN, 2001; ANTONY et al., 2004). 
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Another important transmembrane molecule essential for B-cell activation is CD19, a 

co-receptor molecule that forms a complex with CD21, CD81, and CD225. CD19 has been 

described as a critical co-receptor for amplifying BCR responses, setting intrinsic thresholds of 

B-cell signaling through modulation of BCR-dependent and independent response (DEL 

NAGRO et al., 2005; ISHIURA et al., 2010). Its phosphorylation leads to membrane 

recruitment and activation of PI3K and Akt, thereby enhancing BCR-induced signaling of pro-

survival response (FEARON; CARROLL, 2000). Moreover, CD19 can serves as an adaptor 

protein, influencing the recruitment and amplification of transduction molecules, including 

Lyn, Btk, PI3K, Ras family, adapter molecules (Vav, Grb2) and also SH2 domain (FUJIMOTO 

et al., 2000; ISHIURA et al., 2010). 

Through tyrosine phosphorylation and Akt kinase, CD19 is required for MHC-II-

mediated downstream signaling (BOBBITT; JUSTEMENT, 2000; MILLS; STOLPA; 

CAMBIER, 2007), which in addition to their role as antigen presentation, is involved in B-cell 

fate during B-cell and T-cell interaction (SCHOLL; GEHA, 1994; AL-DACCAK; MOONEY; 

Figure 1. B-cell receptor (BCR) signaling and downstream pathways upon antigen BCR 

crosslink. Adapted from Debant et al. (2015). 
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CHARRON, 2004). In human B cells, CD19/PI3K/Akt/Btk complex is an essential axis 

integrating BCR and Toll-like receptor 9 (TLR9) signaling, a pattern recognition receptor that 

recognizes bacterial and viral DNA containing the cytosine–phosphate–guanine (CpG) 

dideoxynucleotide motif (DALPKE et al., 2006; MORBACH et al., 2016). 

Interestingly, some intracellular pathogens have strategies to evade protective humoral 

immunity, infecting and employing B cells as a host reservoir. Through this mechanism, known 

as the “Trojan horse,” bacteria can multiply and disseminate in the organism (NOTHELFER; 

SANSONETTI; PHALIPON, 2015). Salmonella Typhimurium is one of the examples of 

pathogens capable of infecting B cells at different developmental stages and exploiting them as 

an excellent host for its persistence, dissemination and long-term infection niche (CASTRO-

EGUILUZ et al., 2009; LOPEZ-MEDINA et al., 2014). Thus, comprehending the molecular 

mechanisms involved in T cell-independent B-cell activation and the pathogen interaction with 

them, will provide insights into efficient control strategies. 

2.4 Fecal calprotectin as a non-invasive intestinal inflammation biomarker 

Calprotectin (CP) is a 24 kDa calcium-binding protein, a member of the S100 family 

(KLIGMAN; HILT, 1988; CLOHESSY; GOLDEN, 1995), composed of the heterodimeric 

complex S100A8 and S100A9 (KORNDÖRFER; BRUECKNER; SKERRA, 2007). The 

protein was first described in the 1980s in inflammatory conditions in human tissues, receiving 

different names (FAGERHOL; DALE; ANDERSON, 1980; DALE; FAGERHOL; 

NAESGAARD, 1983; ODINK et al., 1987), but its similar identity was recognized in 1988 

(ANDERSSON et al., 1988). Subsequently, it was renamed calprotectin, highlighting its 

properties of inhibitory activity against Candida albicans and Ca2+ binding characteristics 

(MCNAMARA et al., 1988; STEINBAKK et al., 1990). CP comprises approximately 40 - 60% 

of the total cytosolic protein in neutrophils (EDGEWORTH et al., 1991; HESSIAN; 

EDGEWORTH; HOGG, 1993) and is also expressed in monocytes, activated macrophages, 

dendritic cells, and endothelial and epithelial cells (BRANDTZAEG; DALE; FAGERHOL, 

1987; ŠPLÍCHAL et al., 2002; KUMAR; STEINKASSERER; BERCHTOLD, 2003).  

Many pathological conditions can cause infection and inflammatory response in the 

intestinal environment, disrupting the intestinal barrier (GERMAN; HALL; DAY, 2003; 

ROHR et al., 2018). In response to inflammation, recruitment of neutrophil and monocytes 

leads to massive release of CP by dead granulocytes into the lumen (JOHNE et al., 1997; 

BERSTAD; ARSLAN; FOLVIK, 2009). As CP is resistant to intestinal proteases, pancreatic 

secretions, and bacterial degradation in the lumen (RØSETH et al., 1992), its presence in feces 
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has been widely applied as a biomarker of intestinal inflammation (LEHMANN; BURRI; 

BEGLINGER, 2015). 

2.4.1 The pleiotropic role of calprotectin  

Once released into the lumen, pleiotropic functions including antimicrobial, 

antiproliferative, and apoptotic properties, have been described for CP (STŘÍŽ; 

TREBICHAVSKÝ, 2004). Recognized triggers account for lipopolysaccharides (LPS), 

monosodium urate, and pro-inflammatory mediators, such as TNF-α, IL-1β, and eosinophils 

(SURYONO et al., 2005; REICHMAN et al., 2017). Furthermore, glucocorticoids and non-

steroidal anti-inflammatory drugs positively drive CP release (TIBBLE et al., 1999; 

RYCKMAN et al., 2004; HSU et al., 2005).  

As an antimicrobial player, CP allows the chelation of essential divalent metal ions in 

the extracellular space, such as iron, zinc, calcium, or manganese. This micronutrient-capturing 

mechanism prevents their uptake and metabolic utilization by pathogens, thus inhibiting 

bacterial growth (LOOMANS et al., 1998; KEHL-FIE; SKAAR, 2009). The S100A8 and 

S100A9 protein complexes from CP are essential. CP also contains zinc-binding domains 

(LOOMANS et al., 1998), and both S100A8 and S100A9 have histidine-based zinc-binding 

sequences. The heterodimerization of this complex exposes the high-affinity Zn2+ sites, which 

are considered functional sites for the antimicrobial role of CP (DONATO et al., 2013). 

Antimicrobial properties, particularly against Staphylococcus aureus (KEHL-FIE et al., 2011; 

HAMMER; SKAAR, 2012), Listeria monocytogenes (ZAIA et al., 2008), Klebsiella (HO et al., 

2018), Borrelia burgdorferi (LUSITANI; MALAWISTA; MONTGOMERY, 2003), 

Salmonella enterica serovar Typhimurium (NAUGHTON; GRANT; GOLDEN, 1996), 

Escherichia coli (LIPCSEY et al., 2019), and Candida albicans (URBAN et al., 2009) has been 

described. Interestingly, S. Typhimurium can express a high-affinity zinc transporter 

(ZnuABC), which drives its capacity to overcome CP (LIU et al., 2012; DIAZ-OCHOA et al., 

2016).  

The regulation of inflammation, cell proliferation, differentiation, and tumorigenesis are 

among the immunomodulatory mechanisms of CP (GHAVAMI et al., 2010; LAOUEDJ et al., 

2017). Its interaction with receptor for advanced glycation end products (RAGE) and Toll-like 

receptor 4 (TLR4) receptors (VOGL et al., 2007; TUROVSKAYA et al., 2008) through NF-κB 

pathway (RIVA et al., 2012), subsequently induces the expression of pro-inflammatory and 

anti-inflammatory mediators (SUNAHORI et al., 2006). This was observed in monocytes 

secreting IL-1β, IL-6, and TNF-α (CESARO et al., 2012), neutrophils promoting IL-8 
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expression (SIMARD et al., 2014), and overexpression of macrophages increasing IL-10 and 

extracellular reactive oxygen species (ROS) (YANG et al., 2018). CP secretion has also been 

reported to induce granulocyte adhesion and migration (I et al., 2000; RYCKMAN et al., 2003). 

The apoptotic activity in tumor cells (YUI et al., 2002; NAKATANI et al., 2005; QIN 

et al., 2010), epidermal keratinocytes, and other cells (SAKAGUCHI et al., 2014; ZHENG et 

al., 2014) has been registered. CP-induced apoptosis can occur through increased ROS 

production, which causes mitochondrial dysfunction and damage via BNIP3, the protein 

associated with mitochondrial dysfunction and cell death (GHAVAMI et al., 2010; LEE et al., 

2011). By sequestering zinc, CP promotes the inhibition of matrix metalloproteinases (MMPs) 

(ISAKSEN; FAGERHOL, 2001), suppressing metastasis of CasKi human cervical cancer cells,  

thus inducing apoptosis (QIN et al., 2010). 

2.4.2 Fecal calprotectin and its role as a biomarker in intestinal disease  

Fecal calprotectin (FC) has become a widely used biomarker in human medicine, 

accurately assessing intestinal inflammatory conditions. Its stability for three to seven days and 

homogenous distribution in feces, make FC a useful non-invasive biomarker (RØSETH et al., 

1992; FOELL; WITTKOWSKI; ROTH, 2009; LASSON et al., 2015). In humans, the 

applicability of FC has been explored mainly in diagnosing inflammatory bowel disease (IBD) 

(D’HAENS et al., 2012; LEHMANN; BURRI; BEGLINGER, 2015).  

IBD is an organic condition due to inflammation, consisting of Crohn’s disease (CD) 

and ulcerative colitis (UC), and it is characterized by periods of symptomatic relapse and 

remission (HENDRICKSON; GOKHALE; CHO, 2002). Here, FC has been applied to 

screening patients with suspected IBD before invasive endoscopy (VAN RHEENEN; VAN DE 

VIJVER; FIDLER, 2010). Moreover, FC can be used to monitor the recurrence of IBD during 

postoperative and detect relapses in adults and pediatric patients (WRIGHT et al., 2015; 

HUKKINEN et al., 2016). Patients with IBD and irritable bowel syndrome (IBS) have similar 

symptoms, including abdominal pain and diarrhea (WALSHAM; SHERWOOD, 2016). FC is 

one of the most sensitive approaches in distinguishing organic IBD from functional IBS 

(SCHOEPFER et al., 2008; CHANG et al., 2014; MARI et al., 2019). Likewise can be applied 

to distinguish inflammatory from non-inflammatory gastrointestinal disease (VON ROON et 

al., 2007; BANERJEE et al., 2015; BRESSLER et al., 2015).  

Besides IBD, another common gastrointestinal disorder is necrotizing enterocolitis in 

newborns, and FC has been suggesting a promising biomarker in the diagnosis of premature 

infants (QU et al., 2020). CF has also been explored in veterinary medicine. Several studies 
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have highlighted the clinical usefulness of FC as a sensitive biomarker of chronic inflammatory 

enteropathies (CIEs) in dogs (HEILMANN; SUCHODOLSKI; STEINER, 2008; GRELLET et 

al., 2013; HEILMANN et al., 2018a, 2019), and potentially biomarker in cats (HEILMANN et 

al., 2018b; ENDERLE; KÖLLER; HEILMANN, 2022). 

It is noteworthy that many conditions are associated with an elevated CF level, such as 

bacterial infections, NSAID-induced enteropathy, neoplasms, and other infections 

(ALIBRAHIM; ALJASSER; SALH, 2015; JUKIC et al., 2021). Hence, although FC correlates 

with the number of neutrophils in the intestinal lumen during intestinal inflammation 

(KONIKOFF; DENSON, 2006), it is not possible to discriminate distinct potential triggers. 

Therefore, careful interpretation of FC should be warranted by clinicians. 

2.4.3 The usefulness of FC as a non-invasive biomarker in the swine industry  

In pigs, studies investigating FC were first evaluated in healthy animals to determine 

reference values at different ages (LALLES et al., 2005). The authors observed that the mean 

FC concentrations in adult pigs were in a range similar to that of healthy human adults (13 ± 38 

mg/kg feces and 2–47 mg/kg, respectively). On the other hand, the average concentration for 

newborn piglets was lower (24 ± 60 mg/kg) than for humans newborns (145 ± 78.5 mg/kg). The 

low FC values were attributed to the higher sanitary conditions that pigs were exposed 

(LALLES et al., 2005). Lately, FC has been applied to assesses the effects of dietary alternatives 

to mitigate intestinal inflammation in pigs (XIAO et al., 2014; SLINGER et al., 2019; 

SÁNCHEZ-URIBE et al., 2022). 

Limited information regarding the effectiveness of FC as a biomarker of inflammation 

caused by enteric pathogens in pigs is available. Previous studies have shown the correlation 

between CP in plasma and intestinal lumen  (ŠPLÍCHAL et al., 2005), and jejunal mucosa 

(XIAO et al., 2014) following Escherichia coli infection. Recently, Escherichia coli infection 

did not elicit a significant increase in FC concentration in challenged weaned piglets, indicating 

FC may not be a valuable biomarker against E. coli enteropathy (BOECKMAN et al., 2022). 

Hence, given its applicability in human medicine and the lack of knowledge about its 

application during infectious diarrhea in pigs, it is interesting to investigate its potential as a 

non-invasive biomarker in swine diarrheal disease. 

3 FINAL CONSIDERATIONS 

 Swine dysentery, spirochetal colitis and salmonelosis, as mentioned above, are a 

concern to producers, veterinarians and animal science professionals. However, many aspects 
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of the pathogen-host interaction are unclear and require further scientific investigation to aid 

clarification on pathogenesis mechanisms, in order to develop preventative tools. While 

antibiotics have been effective for decades, concerns raised on the pandemic of antimicrobial 

resistance, animal welfare, and food safety have turned the lights on making better decisions 

and policies to reduce its usage. Combining analysis with insights into strategies used by 

pathogens would substantially increase our knowledge of how diarrhea is elicited during 

infection, which may lead to novel therapeutic and vaccination approaches in the future. 

Therefore, the objectives of the studies presented in this thesis were to evaluate the host-

pathogen-microbiome interactions of agents of grower-finisher diarrhea to which antibiotics are 

the main control tool used in commercial farms.  
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Abstract  

Swine dysentery (SD) is a worldwide production-limiting disease of growing-finishing pigs in 

commercial farms. The importance of the large intestinal microbiota in the swine dysentery 

pathogenesis has been established, but not well characterized. The objective of this study was 

to characterize the fecal bacterial microbiota of pigs immediately prior to developing clinical 

signs of swine dysentery. A total of 60 fecal samples were collected from 15 contact pigs one 

day after contact with seeder pigs (d0, n=15), 2 days before mucohaemorrhagic diarrhea was 

observed (d-2SD, n=15), 1 day before mucohaemorrhagic diarrhea was observed (d-1SD, 

n=15), and the day when pigs developed mucohemorragic diarrhea (MHD, n=15). Sequencing 

of cpn60 amplicons was used to profile the microbiome, and analyses were performed on 

QIIME2. Increased Chao1 index in d-1SD and MHD samples when compared to the d0 group 

was the only change observed in alpha diversity. No differences between groups on beta 

diversity (Bray-Curtis dissimilarity) were found. Differential abundance analysis revealed that  
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Alistipes dispar and Parabacteroides gordonii were increased in MHD fecal samples when 

compared to d-2SD and d-1SD. Future investigations to verify the specific role of these taxa on 

the pathogenesis of SD is warranted. 

Background 

Swine dysentery (SD) is a production limiting enteric disease affecting grower-finisher 

pigs worldwide. The anaerobic tolerant spirochete Brachyspira hyodysenteriae was the initial 

etiological agent of SD [1], which is characterized by mucohaemorrhagic diarrhea and 

fibrinonecrotic colitis [1,2]. Recently, B. suanatina [3] and B. hampsonii [4] were also 

recognized as agents of SD. 

A complex interaction between the large intestine microbiota and B. hyodysenteriae has 

been demonstrated. Studies based on culture have shown that B. hyodysenteriae requires the 

presence of other bacteria for severe SD expression [5–9]. Gnotobiotic pigs inoculated with B. 

hyodysenteriae alone did not develop mucohaemorrhagic diarrhea [5,10]. Colitis and 

mucohaemorrhagic diarrhea was reported in gnotobiotic pigs co-inoculated with  B. 

hyodysenteriae and Fusobacterium necrophorum or Bacteroides vulgatus [5]. Mucoid diarrhea 

was found in pigs co-inoculated with B. hyodysenteriae, F. necrophorum, B. vulgatus, a 

Clostridium species, or Listeria denitrificans, but not when the spirochete was the only 

inoculum [9]. Recently, high-throughput sequencing of microbial barcode genes, such as 16S 

rRNA or cpn60, has been applied to study SD. Colonic contents and mucosal scrapings from 

pigs inoculated with B. hyodysenteriae or B. hampsonii had decreased species richness than 

their uninoculated counterparts [11]. Lower Bacteroidetes:Firmicutes ratio was linked to 

mucohaemorrhagic diarrhea following inoculation of pigs with B. hampsonii compared with 

sham-inoculated control or inoculated pigs that did not develop clinical disease [12]. 

Campylobacter spp., Mogibacterium spp., Brachyspira spp., and Desulfovibrio spp. were found 

in higher numbers in mucosal scrapings of pigs that developed SD, whereas Bifidobacterium 

spp. and Lactobacillus spp. were significantly more abundant in pigs without SD [11].  

It has also been suggested that the diet may influence the incidence of SD and the colonic 

microbiome. However, results have been contradictory [13–16]. Highly fermentable soluble 

fiber has been associated with a protective effect against SD [17–19]. These diets promoted the 

growth of lactic acid and butyric acid-producing bacteria, such as Bifidobacterium spp., 

Megasphaera spp., and Faecalibacterium spp. [16,20,21]. Conversely, poorly fermentable 

insoluble fiber has been linked to increased odds of pigs developing SD [22]. This observation 

was combined with augmented loads of anaerobes such as Shuttleworthia spp., Ruminococcus 



67 

 

 

torques, and Mogibacterium spp., which may play a synergistic role with B. hyodysenteriae in 

inducing SD [21]. 

It is well established that the colonic microbial community changes following the 

development of SD [9,11,12,16]. However, little is known regarding the changes preceding the 

clinical signs  of SD. We hypothesize that the fecal microbiome is disturbed immediately before 

clinical SD is observed. Thus, the goal of this study was to characterize the bacterial fecal 

microbiota composition of pigs immediately prior to developing clinical signs of swine 

dysentery. 

 

Methods 

Ethics statement 

Samples used in this study were collected during a trial conducted in accordance with 

the Canadian Council for Animal Care and approved by the University of Saskatchewan Animal 

Research Ethics Board (Protocol #20180046). 

Animal trial and samples  

Barrows (n=15), age 9 to 10 weeks-old, were obtained from a PRRSV, Mycoplasma 

hyopneumoniae negative, high-health herd farm with no gastrointestinal clinical signs and no 

history or previous laboratory diagnosis of SD. Animals were housed and allowed to acclimate 

in a BSL-2 animal care facility for 7 days prior to inoculation. A commercial starter diet, 

unmedicated, fed ad libitum was used. Fecal samples were collected from contact pigs that were 

exposed to seeder pigs experimentally inoculated intra-gastrically thrice over 72 hours with 100 

mL of a 24h broth culture of B. hyodysenteriae strain G44 (total dose 3.72 x 1011 genome 

equivalents/mL). Feces from contact pigs were collected at four different times: one day after 

contact with seeder pigs (d0, n=15); two (2) days before mucohaemorrhagic diarrhea was 

observed (d-2SD, n=15); one (1) day before mucohaemorrhagic diarrhea was observed (d-1SD, 

n=15); and at the day when pigs developed mucohemorragic diarrhea (MHD, n=15), totaling 

60 samples. A summary of the samples used from this trial is shown on Table S1. All fecal 

samples were collected by digital stimulation and stored at -80ºC until processing for analysis. 

The development of swine dysentery was confirmed by associating clinical signs, a positive 

fecal B. hyodysenteriae culture and gross necropsy lesions. 
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DNA extraction, cpn60 amplification and sequencing 

For each sample, total DNA was extracted from 200 mg of feces using a commercial kit 

(MagMax DNA Ultra v2.0; Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, 

USA) on a KingFisher Flex platform (Thermo Fisher Scientific, Waltham, MA, USA). 

Amplification and indexing of the cpn60 universal target barcode region were performed as 

previously described [23]. Briefly, the cpn60 gene was amplified using a primer mix comprised 

of 100 µM from  each of the following primers: M279 Forward (5’ – 

GAIIIIGCIGGIGAYGGIACIACIAC – 3’), M280 Reverse (5’ – 

YKIYKITCICCRAAICCIGGIGC– 3’), M1612 Forward (5’ – 

GAIIIIGCIGGYGACGGYACSACSAC– 3’), and M1613 Reverse (5’ – 

CGRCGRTCRCCGAAGCCSGGIGCCTT– 3’). Primers were mixed in a 1:3 molar ratio of 

M279:M280 (3 µL each), and M1612:M1613 (9 µL each) and diluted in 276 µL of ultrapure 

water for a total volume of 300 µL.  PCR reactions had a total reaction volume of 50 µL, for 2 

µL of DNA template. The master mix was prepared using 38.1 µL ultrapure water, 5 µL of 10x 

PCR buffer, 2.5 µL of MgCI2 (50mM), 0.4 µL of  Platinum Taq Polymerase (Invitrogen, 

Thermo Fisher Scientific, USA), 1 µL of dNTP mix (10 mM; Invitrogen, Thermo Fisher 

Scientific, USA) and 1 µL of the primer cocktail described above. Reactions were incubated at 

95°C for initial denaturation for 5 minutes, followed by 40 cycles of denaturation at 95°C for 

30 seconds, annealing at 60°C for 30 seconds, extension at 72°C for 30 seconds, and a final 

extension at 72°C for 2 minutes. Cpn60 amplicons were purified using NucleoMag NGS beads 

(Macherey-Nagel Inc., Germany). Indexing PCR for library preparation was performed using a 

Nextera XT primers library preparation kit (Illumina Inc., San Diego, CA, USA) according to 

the manufacturer's protocol. Indexed amplicons were size‐selected using NucleoMag NGS 

beads. Indexed amplicons were quantified, normalized, and diluted to 10pM libraries 

containing 5% PhiX DNA, Sequencing was carried out on an Illumina MiSeq (Illumina Inc., 

San Diego, CA, USA) platform using a 500-cycle reagent kit v2 (401 R1, 101 R2, Illumina Inc., 

San Diego, CA, USA).  

Sequencing data analysis 

Following sequencing, on-rig quality control procedures were executed. Raw data was 

processed by initially removing sequencing and amplification primers using Cutadapt [24], and 

low quality or short length and technical sequences were trimmed with Trimmomatic [25]. 

Filtered sequence reads were imported to Quantitative Insights Into Microbial Ecology 2 
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(QIIME2) [26], and variant calling was carried out using DADA2, truncating at 150 bp from 

the 5′ end [27]. Reads were mapped to the nonredundant version of cpnDB (cpnDB_nr) using 

watered BLAST [28]. Downstream analysis used only amplicon sequence variants (ASV) with 

>55% sequence similarity to a cpnDB_nr match. An feature table was generated and analyzed 

using a web-based platform for high-throughput sequencing data statistical analyses [29]. For 

further statistical analysis and visualization, the ASV table with taxa and metadata file were 

uploaded to the MicrobiomeAnalyst tool (Xia Lab, McGill University, Quebec, Canada; 

available at: https://www.microbiomeanalyst.ca) [30]. At the data filtering step, a low count 

filter was used to filter all ASV features with <4 counts in at least 20% prevalence, and 10% 

minimum variance among samples, leaving 169 ASV [29]. The alpha diversity indices (Chao1 

and Shannon’s index) were calculated on raw data and comparisons were performed using 

ANOVA followed by post-hoc Tukey test. Beta-diversity differences between groups were 

analyzed by permutational multivariate analysis of variance (PERMANOVA) using Bray-

Curtis dissimilarity index. Principal coordinate analysis (PCoA) was used to visualize the beta 

diversity data (MicrobiomeAnalyst). Differential abundance analysis at the phylum and ASV 

levels between sampling days was performed using DESeq2, and the adjusted p-value<0.05 

was used to report the significance (R version 4.2.1, RStudio, Boston, MA, USA, Love et al., 

2014). 

Results  

Following quality control steps, sequencing resulted in 2,639,963 high-quality reads 

(average 44,745 per sample, ranging from 4,755 to 86,947). One sample, 387_MHD (rep 8), 

was removed from the analysis due to an extremely low number of reads generated (159). A 

total of 589 ASV were detected, 420 had ≥ 2 reads total and were kept for downstream analyses. 

Fecal microbial community composition 

Proportional taxa abundance data at the phylum and family level are shown in Figures 

1A and 1B, respectively. The top 3 most abundant phyla were firmicutes, terrabacteria-group 

and bacteroidetes. The top 3 most abundant family were Bacteroidales, Clostridiales and 

Ruminococcaceae. 

No significant differences in alpha diversity indexes (Chao1, P = 0.056, Shannon’s 

index, P = 0.248) were observed between groups at the phylum level (Figure 2A, 2B). At the 

genus level, Chao1 index was increased at d-1SD (P = 0.042) and MHD (P = 0.001) when 
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compared to d0 samples (Figure 2C), and no significant differences in Shannon’s index were 

observed among groups (Figure 2D; P =0.270). No changes in beta diversity were observed at 

the phylum level. At the genus level, four samples clustered separately from the others 

significantly affecting the data distribution, but an even distribution of high and low ranks 

within and between groups was observed as evidenced by the small R2 value identified (R2 = 

0.091684, P = 0.003, Figure 3).   

Differential abundance analysis  

 Reads associated with actinobacteria and spirochetes significantly differed between 

groups (Figure 4A and 4B). ASVs with more than 10.000 total read counts and differentially 

abundant between d-2SD vs. MHD, d-1SD vs. MHD and d0 vs. all other groups are presented 

in Table 1, Table 2, and Supplementary Table 2, respectively. 

Discussion  

This study characterized the fecal microbiota of pigs on the two days immediately prior 

to the development of swine dysentery clinical signs. Alpha and beta diversity were not 

significantly affected on the two (2) days prior the observation of mucohaemorrhagic diarrhea. 

However, differential abundance analysis revealed ASVs significantly affected prior to the 

observation of clinical SD. This work is a stepping-stone towards the complete understanding 

of SD pathogenesis, and the role of the microbiome in this mechanism. 

A high abundance of Eubacterium brachy and a low abundance of Parabacteroides 

gordonii was observed in d-2SD, when compared to MHD samples. The Eubacterium genera 

is known to be present in the healthy mammalian intestinal microbiota, as demonstrated in mice, 

humans and pigs [32–34]. Eubacterium spp. is suggested to benefit the host largely due to its 

production of butyrate [35–37]. Eubacterium brachy, a Gram-positive strict anaerobe, was 

frequently isolated from patients with periodontitis and pleuropulmonary infection [38,39]. 

Mouse models of colitis using dextran sodium sulfate revealed that E. limosum and its 

metabolites were associated with reduced clinical scores through increased butyrate levels. In 

T84 colonocyte cells, this effect is mediated by reduced IL-6 and TLR4 expression [40]. 

Additionally, lower abundance of Eubacterium spp. has been reported in patients with 

ulcerative colitis or Crohn’s disease, when compared to healthy patients [41,42]. Previous work 

showing the association between a higher abundance of Eubacterium spp. and attenuated colitis 

corroborates our findings, as this genera was found depleted in MHD samples. In contrast, 

Parabacteroides spp. is found in low amounts in the human gut microbiota [43]. In pigs, it is 
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suggested to be part of the intestinal microbiota of healthy animals [44–46]. Humans with IBD 

have decreased abundance of Parabacteroides, when compared to healthy patients [47,48]. 

Bacteria of this genera were found to produce SCFAs [49], regulate immunity in multiple 

sclerosis through IL-10 induction [50], and relieve intestinal inflammation in mice with acute 

and chronic colitis by reducing the levels of pro-inflammatory cytokines [51]. Alistipes dispar 

was also found depleted on d-1SD and d-2SD, when compared to MHD. Alistipes spp. are 

enriched in human fecal samples from patients with colorectal cancer [52,53], and other non-

intestinal disorders, such as depression and atherosclerotic cardiovascular disease [54,55]. It is 

suggested to thrive in the inflamed colon of IL-10-/- knocked out mice, being sufficient to induce 

colitis and tumorigenesis through IL-6–STAT3 signaling [56]. In contrast, decreased 

abundance of Alistipes spp. has been associated with protective effects in IBD patients and 

ulcerative colitis in mice [57,58]. Interestingly, when A. finegoldii was administered together 

with Bacteroides eggerthii, a colitis-predisposing bacterium, it attenuated the severity of 

dextran sulfate sodium (DSS)-induced colitis in mice depleted of intestinal microbiota [57]. We 

speculate both anaerobes, Parabacteroides spp. and Alistipes dispar, increased abundance at 

MHD is either linked to their opportunistic profile or they truly are part of the ancillary 

microbiota required for the severe expression of SD, as previously shown to be required  [5–

7,9,11]. 

Actinobacteria load decreased from d0 samples to MHD. This has not been reported 

before, although differences in analytical methods between this study and previous research 

may explain such finding [11,12]. Interestingly, a significant increase in actinobacteria 

abundance and decreased incidence of clinical SD was observed in B. hyodysenteriae-

inoculated pigs consuming a highly fermentable fiber, when compared to pigs fed a low 

fermentable fiber [21]. Several studies have found a decline in actinobacteria abundance during 

different gastrointestinal disorders, such as acute hemorrhagic diarrhea in dogs [59], new 

neonatal porcine diarrhea [60], and post-weaning diarrhea in piglets [61]. Although this phylum 

has been found in higher abundance in healthy intestinal samples when compared to diseased 

ones, to clarify the exact role of actinobacteria in SD requires further studies. 

Higher Chao1 index was identified on d-1SD, when compared to the control d0 samples. 

Differing from our findings, Burrough et al. (2017). found a low Chao1 diversity index in 

colonic contents and mucosal scrapings of B. hyodysenteriae or B. hampsonii inoculated pigs, 

when compared to uninoculated controls. No changes in alpha diversity were observed in the 

fecal microbiota of pigs inoculated with B. hampsonii [12], E. coli F18+ [62,63], or S. 

Typhimurium [64], when compared to matching controls. When compared to other alpha 
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diversity indices, Chao1 index is considered sensitive to rare taxa [65,66]. Given the inherent 

limitations of high-throughput sequencing, changes in ASVs with low abundance could be a 

simple result of the technique used to generate the data, or the bioinformatic algorithms used.  

Beta-diversity analysis at the genus level revealed a single cluster with all samples 

intertwined. A previous study found no significant differences in beta-diversity fecal samples 

of pigs prior to inoculation and at the onset of mucohaemorrhagic diarrhea [12]. However, 

differences in beta-diversity between the luminal content and mucosal scrapings were observed 

in pigs with and without SD [11]. It is known that the mucosal, luminal and fecal microbiomes 

are compositionally different [67]. As a limitation of our study, the design used relied on ante-

mortem samples. Unless surgical intervention was performed, which could co-found the 

development of clinical signs, sampling the luminal or mucosal microbiome of pigs on the days 

prior to SD is rather challenging. 

While we recognize that a small sample size was used in this study, our investigation 

revealed that the fecal microbiota changed in the days prior to the development of clinical SD. 

We suggest that the anaerobes A. dispar and P. gordonii may play a role in contributing to the 

development of SD. Further investigation on their specific role may help clarify the importance 

of other microbes in SD. In addition, studies associating the fecal metabolome to the microbiota 

taxonomic composition may shed a light on the microbiota role in SD pathogenesis.  
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Figure 1. Stacked bar charts representing proportional abundance of bacterial taxa one day after 

contact with seeder pigs (d0, n=15); 2 days pre-SD (d-2SD, n=15); 1 day pre-SD (d-1SD, n=15); 

and the day mucohaemorrhagic diarrhea was observed for the first time (MHD, n =14). (A) 

Depicts data at the phylum level, and (B) at the family level. 
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Figure 2. Alpha-diversity metrics from fecal samples collected after contact with seeder pigs 

(d0, n=15); 2 days pre-SD (d-2SD, n=15); 1 day pre-SD (d-1SD, n=15); and the day 

mucohaemorrhagic diarrhea was observed for the first time (MHD, n =14). A: Chao1 richness 

at the phylum level; B: Shannon’s diversity index at the phylum level; 2C: Chao1 richness index 

at the genus level; D: Shannon’s diversity index at the genus level. Boxes shows interquartile 

ranges, whiskers depict the minimum and maximum values.  
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Figure 3. Beta diversity (Bray-Curtis dissimilarity data) at genus level based on principal 

coordinates analysis (PCoA) of fecal samples from pigs after contact with seeder pigs (d0, 

n=15); 2 days pre-SD (d-2SD, n=15); 1 day pre-SD (d-1SD, n=15); and the day 

mucohaemorrhagic diarrhea was observed for the first time (MHD, n =14). (R-squared: 

0.091684; p-value: 0.003).  
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Figure 4. Phyla significantly enriched or depleted in fecal samples after contact with seeder 

pigs (d0, n=14); 2 days pre-SD (d-2SD, n=15); 1 day pre-SD (d-1SD, n=15); and the day 

mucohaemorrhagic diarrhea was observed for the first time (MHD, n =14). Boxplot represents 

the sum of reads associated with a given phylum at a given sampling time, and whiskers depict 

the minimum and maximum number of reads.  
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Table 1. Amplicon sequence variants (ASV) significantly different abundance between d-2SD 

and MHD. 

ASV 
Total read counts 

logFC3 
adjusted P-

value d-2SD1 MHD2 

Parabacteroides gordonii 6228 17377 -1.524 0.002 

Eubacterium  brachy  7112 1546 2.141 0.002 

Prevotella buccae 1967 6224 -2.283 0.018 

Alistipes dispar 1789 8254 -3.373 0.002 
1d-2SD: 2 days before mucohaemorrhagic diarrhea was observed (n=15); 2MHD: day 

mucohaemorrhagic diarrhea was observed for the first time (n=14); 3The degree of differential 

abundance is represented by log2 fold change (logFC) between d-2SD and MHD samples. 

 

Table 2. Amplicon sequence variant (ASV) with significantly different abundance between d-

1SD and MHD. 

ASV 
Total read counts 

logFC3 adjusted P-value 
d-1SD1 MHD2 

Alistipes dispar 3089 8254 -3.652 0.002 
1d-1SD: one day before mucohaemorrhagic diarrhea was observed (n=15); 2MHD: day 

mucohaemorrhagic diarrhea was observed for the first time (n=14); 3The degree of differential 

abundance is represented by log2 fold change (logFC) between d-1SD and MHD samples. 
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Table S1. Description of fecal samples used in this study.  

Pig Pen 
Sampling day (DPI)1 

d02 d-2SD3 d-1SD4 d-MHD5 

358 Pen 1  0 7 8 9 

385 Pen 1  0 7 8 9 

484 Pen 1  0 10 11 12 

359 Pen 1  0 13 14 15 

368 Pen 2  0 9 10 15 

573 Pen 3 0 16 17 18 

370 Pen 3 0 12 13 14 

374 Pen 3 0 7 8 9 

410 Pen 3 0 12 13 14 

387 Pen 8  0 7 8 9 

381 Pen 8  0 7 8 9 

392 Pen 8  0 13 14 15 

435 Pen 9  0 5 6 7 

576 Pen 9  0 7 8 9 

593 Pen 10 0 12 13 14 

1DPI: days post introduction of seeder pigs, 2d0: day after contact with seeder pigs (n=15), 

3d-2SD: 2 days before mucohaemorrhagic diarrhea was observed (n=15), 4d-1SD: one day 

before mucohaemorrhagic diarrhea was observed (n=15), 5MHD: day mucohaemorrhagic 

diarrhea was observed for the first time (n=14). 
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Table S2. Amplicon sequence variants (ASV) with significant differential abundance between d0 and all other groups.  

 ASV 
Total read counts 

logFC5 
adjusted 

P-value d01 d-2SD2 d-1SD3 MHD4 

d0 

vs.  

d-

2SD 

Alistipes sp. JC136 8154 4867 10578 9037 1.914 0.022 

Acetanaerobacterium 

elongatum 
7961 4030 7571 4520 2.386 0.000 

Limosilactobacillus frumenti 592 5606 3661 4042 -2.276 0.033 

d0 

vs.  

d-

1SD 

Prevotella baroniae 8918 8306 8530 11078 1.341 0.024 

Dialister succinatiphilus 13411 4355 4583 1866 1.968 0,015 

Limosilactobacillus frumenti 592 5606 3661 4042 -2.463 0.025 

d0 

vs.  

d-

MHD 

Phascolarctobacterium  sp. 51619 79540 83848 105144 -1.037 0.024 

Cohnella fermenti 11475 19674 25019 14247 0,610 0.030 

Barnesiella intestinihominis 11117 10148 17669 9807 0.957 0.030 

Parabacteroides gordonii 4891 6228 10456 17377 -1.266 0.008 

Eubacterium brachy  10230 7112 7813 1546 3.324 0.000 

Selenomonas bovis 5056 7415 9064 5154 1.072 0.018 

Dialister succinatiphilus 13411 4355 4583 1866 2.705 0.000 

Acetanaerobacterium 

elongatum 
7961 4030 7571 4520 1.758 0.007 

Flavonifractor sp. 2203 4221 5639 8325 -1.583 0.002 

Ruminococcus callidus  6150 3611 5500 1977 1.953 0.033 



88 

 

 

Prevotella buccae 2454 1967 3943 6224 -2.096 0.030 

Alistipes dispar 1321 1789 3089 8254 -2.532 0.024 

Limosilactobacillus frumenti 592 5606 3661 4042 -2.279 0.014 

Pygmaiobacter massiliensis 4084 2929 3860 2889 1.323 0.005 

Ammonifex degensii 1024 3047 4653 4723 -1.865 0.007 

1d0: day after contact with seeder pigs (n=15), 2d-2SD: 2 days before mucohaemorrhagic diarrhea was observed (n=15), 3d-1SD: one day before 

mucohaemorrhagic diarrhea was observed (n=15), 4MHD: day mucohaemorrhagic diarrhea was observed for the first time (n=14).5The degree 

of differential abundance is represented by log2 fold change (logFC) between d0 and all other sample groups.  
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ABSTRACT  

Swine dysentery, spirochetal colitis, and salmonellosis are production-limiting enteric 

diseases of global importance to the swine industry. Despite decades of efforts, mitigation of 

these diseases still relies on antibiotic therapy. A common knowledge gap among the three 

agents is the early B-cell response to infection in pigs. Thus, this study aimed to characterize 

the porcine B-cell response to Brachyspira hyodysenteriae, Brachyspira hampsonii (virulent 

and avirulent strains), Brachyspira pilosicoli, and Salmonella Typhimurium, the agents of the 

syndromes mentioned above. Immortalized porcine B-cells were co-incubated for 8 hours with 

each pathogen, as well as E. coli LPS and a sham-inoculum (n=3/treatment). B-cell viability 

following exposure to treatments was evaluated using trypan blue, and the expression levels of 
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B-cell activation-related genes was profiled using RT-PCR. Only S. Typhimurium and LPS led 

to increased B-cell mortality. B. pilosicoli downregulated CD19, syk, lyn, and TNF-α, and 

elicited no change in CD79b and SLA-DRA expression levels, when compared to the sham-

inoculated group. In contrast, all other treatments significantly upregulated CD79b and 

stimulated responses in other B-cell downstream genes. These findings suggest that B. pilosicoli 

does not elicit an immediate T-independent B-cell response, nor it triggers antigen-presenting 

mechanisms. All other agents activated at least one trigger within the T-independent pathways, 

as well as peptide antigen presenting mechanisms. Future research is warranted to verify these 

findings in vivo. 

 
Keyworks: swine dysentery, colitis, salmonellosis, humoral immunomodulation, gene 

pathways.  

1. Introduction  

Swine dysentery (SD), spirochetal colitis (SC), and swine salmonellosis (SS) are 

diarrheic diseases affecting swine in the grower-finisher stage, and are associated with 

decreased growth performance and increased production costs [1–3]. SD is characterized by 

mucohaemorrhagic diarrhea and colitis. It is caused by Brachyspira hyodysenteriae [4], B. 

suanatina [5] or B. hampsonii [6]. Brachyspira pilosicoli is the causative agent of SC, clinically 

described as mucoid, watery diarrhea linked to mild colitis when compared to SD [7]. 

Salmonella enterica serovar Typhimurium causes watery diarrhea and enterocolitis in growing 

pigs [8]. In practice, these three diseases are often controlled and treated using antimicrobial 

therapy in commercial operations. 

Several different vaccine development strategies have been explored for SD [9–11], and 

SC [12]. Despite these efforts, only partial protection has been induced and no effective vaccine 

for SD or SC is commercially available in the major pork producing countries. In contrast, 

commercial Salmonella vaccines are available in many countries [13–15]. However,  cross-

protection between serovars is questionable, impacting vaccine uptake in commercial farms 

[16–18]. Thus, the reliance on antimicrobials for disease mitigation. Consequently, the 

emergence of antibiotic resistant strain is a concern as it is linked to animal welfare, food safety, 

and security [19,20]. 

B-cells express multiple intra and extracellular receptors capable of recognizing 

antigens, including bacterial, that trigger signals to modulate the innate and adaptive immune 

responses [21]. T-cell independent B-cell activation takes part in the early response against 
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pathogens through the production of IgM, and serves as a gateway to immunotolerance or 

immune activation [22]. The B-cell receptor (BCR) is an important player in this mechanism. 

It is formed by a membrane-bound immunoglobulin (Ig) and a heterodimeric signaling subunit 

(CD79a/CD79b) [23]. Upon BCR crosslinking by antigens, the proximal kinase lyn initiates 

the signaling cascade phosphorylating tyrosines in the CD79a/CD79b BCR subunits, which 

results in recruitment and activation of the spleen tyrosine kinase (syk) [24–26]. Syk leads to 

the phosphorylation and activation of downstream molecular pathways that lead to B-cell 

activation, proliferation, and differentiation or quiescence [27,28].  

We hypothesized that B-cell exposure to Brachyspira hyodysenteriae, Brachyspira 

pilosicoli, B. hampsonii, and Salmonella Typhimurium activates different triggers within the 

B-cell intrinsic activation pathways. The goal of this study was to investigate the initial mRNA 

B-cell response to swine enteric pathogens, independently of T-cells. 

2. Materials and Methods  

2.1 B-cell culture: A immortalized porcine B-cell line derived from a crossbred pig with 

lymphoma was used [29]. Cells were cultured at 37°C with 5% CO2 in a standard bench-top 

CO2 incubator (Thermo Fisher Scientific, Waltham, MA, USA) using high quality polystyrene 

flasks (Sarstedt, Numbest, Germany). Complete RPMI 1640 media with L-glutamine (Gibco 

Life Technologies, Co., Grand Island, NY, USA), supplemented with 10 mM HEPES buffer 

(Gibco Life Technologies, Co., Grand Island, NY, USA), 1X non-essential amino acids (Gibco 

Life Technologies, Co., Grand Island, NY, USA), 1 mM sodium pyruvate (Gibco Life 

Technologies, Co., Grand Island, NY, USA), 50 μg/mL gentamycin (Gibco Life Technologies, 

Co., Grand Island, NY, USA), 5,000 U/mL penicillin-streptomycin (Gibco Life Technologies, 

Co., Grand Island, NY, USA), and 5% fetal bovine serum (Gibco Life Technologies, Co., Grand 

Island, NY, USA) [29]. Once cells reached 90-100% confluency, they were passaged at a 

concentration of 1 × 105 cells/mL for inoculation. 

2.2 Bacterial inocula culture: Salmonella enterica serovar Typhimurium strain X4232 

was cultured at 37°C in Luria-Bertani broth (LB, BD Canada, Oakville, ON, Canada). 

Brachyspira hyodysenteriae strain G44 (B. hyo), the virulent Brachyspira hampsonii clade II 

strain 30446 (B. hampsonii), the non-pathogenic Brachyspira hampsonii clade 2 strain KL-180 

(B. KL180), and Brachyspira pilosicoli (B. pilosicoli) were cultured in brain heart infusion 

(BHI) broth (Becton and Dickinson Company, Sparks,  MD, USA) supplemented with 10% of 

fetal bovine serum, and incubated under anaerobiosis (Anaerogen, Oxoid Limited, Basingstoke, 

United Kingdom) at 39ºC. A B. pilosicoli aliquot was sonicated (Vibracell Sonicator, Sonics & 
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Materials Inc., Danbury, Connecticut, USA) for 2 minutes at 20 kHz to inactivate the bacteria 

(B. pilo dead).  

2.3 Inoculation procedure: 25 mL flasks containing B-cells at 1 × 105 cells/mL were 

exposed to one of the following inocula: negative control (sham inoculated, n=6); positive 

control (100 µg/flask of E.coli O111:B4 lipopolysaccharide, LPS, n=6);  B. hyo (1.69 x 107 

genome equivalents (GE)/mL, n=6); B. hampsonii (1.49 x 109 GE/mL, n=3), B. pilosicoli (3.35 

x 1010 GE/mL, n=6), B. KL180 (4.79 x 109 GE/mL, n=3), B. pilo dead (1.26 x 1011 GE/mL, 

n=3), and S. Typhimurium (4.32 x 109 CFU/mL, n =6). Inocula were prepared by centrifuging 

bacterial culture broth at 10,000 rpm for 10 minutes. Next, cell pellets were resuspended in 6 

mL of cRPMI and inoculated into the flasks containing B-cells. Co-incubation followed for 8 

hours at 37°C in 5% CO2. 

2.4 B-cell viability assay: Following the exposure period, B-cell viability was measured 

using trypan blue (Lonza, Walkersville, MD, USA). Briefly, 0.1 mL of 0.4% trypan blue was 

added to a 0.4 mL aliquot from each flask, incubated for 2 minutes at room temperature and 

counted using a hemocytometer chamber (Hausser Scientific, Horsham, PA, USA) and a light 

microscope at 40x magnification. Results are reported as total dead cells/total cell count x 100. 

2.5 Bacterial viability: Before the co-incubation period, 100 µL of each Brachyspira 

inocula were plated on blood agar plates and incubated anaerobically using a commercial 

system (Anaerogen, Oxoid Limited, Basingstoke, United Kingdom) at 42°C for 48 hours. 

Similarly, 100 µL of Salmonella Typhimurium were plated on LB agar plates (Bectron, 

Dickinson and Company BD, Sparks, MD, USA) and incubated at 39ºC for 24 hours. After the 

co-incubation period, 100 µL of cRPMI containing any of the Brachyspira inocula or cRPMI 

inoculated with Salmonella Typhimurium were plated on their respective medium plates and 

environmental conditions described above. 

2.6 Relative mRNA expression levels: Expression of CD19 (B-lymphocyte antigen),  

CD79b (immunoglobulin-associated beta), lyn (tyrosine-protein kinase), syk (spleen associated 

tyrosine Kinase), SLA-DRA (swine leukocyte antigen class II), tumor necrosis factor alpha 

(TNF-α), interferon alpha (IFN-α), interferon beta (IFN-β), and interleukin 10 (IL-10) was 

evaluated by reverse transcriptase, real time PCR. Primers used for amplification were: CD19: 

forward 5´- GAAATTGCTGAGCCTGAACC-3´, reverse 5´- 

AGCAACAGAACAGCCTTTCC-3´; CD79b: forward 5´- TGATTTGGAGGAGGGAGTTC-

3´, reverse 5´- CATGGGAGAATGGGTTTGAG-3´; LYN: forward 5´-

TTGTTGACAAGAGGCTGTGC-3´, reverse 5´ TGGGAAAGACACCAAAGCTC-3´; SYK: 

forward 5´- CACTTGCCCTTCTTCTTTGG-3´, reverse 5´- CGGTTGAAAGGGTTCTTGAG-
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3´; SLA-DRA: forward 5´- ATCTCCCCTTCATGCCCTCA-3´, reverse 5´- 

AGCTTCAAACTCCCAGTGCT-3´; TNF-α: forward 5´- CCAATGGCAGAGTGGGTATG-

3´, reverse 5´- TGAAGAGGACCTGGGAGTAG-3´; IFN-α: forward 5′-

GGCTCTGGTGCATGAGATGC-3′, reverse 5′-CAGCCAGGATGGAGTCCTCC-3′; IFN-β: 

forward 5′-TGCAACCACCACAATTCCAGAAGG-3′, reverse 5′-

TCTGCCCATCAAGTTCCACAAGGA-3′, and IL-10: forward 5′-

GGTTGCCAAGCCTTGTCAG-3′, reverse 5′-AGGCACTCTTCACCTCCTC-3′. The 

cytokines primers were previously published and validated [30]. All other primers were 

validated initially in silico by verifying primer nucleotide homology with the target template, 

followed by amplicon size verification and melt-curve analysis using the PCR conditions 

described below. Following the co-incubation period, flasks containing B-cells and a given 

inocula were centrifuged at 500 g for 5 minutes. The supernatant was discarded and 1 mL of 

RNAlater (Sigma-Aldrich Co., St. Louis, MO, USA) was added to the pellet and vortexed. 

Samples were stored at -80°C until processing. RNA extraction was performed using a 

commercial kit (Qiagen RNeasy, Qiagen, Hilden, Germany) and cDNA was synthesized using 

QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany) following the manufacturer’s 

instructions. PCR reactions were conducted in a Bio-Rad CFX instrument (Bio-Rad 

Laboratories Ltd., Mississauga, ON). Each 25 μL reaction contained 12.5 mL of SsoAdvanced 

Universal SYBR Green Supermix (Bio-Rad Laboratories Ltd, Hercules, CA, USA), forward 

and reverse primers (20 μM each), and 2 mL of cDNA template. Reactions were incubated at 

94◦C for 3 minutes, followed by 40 cycles of 10 seconds at 95ºC, 10 seconds at 59ºC for SLA-

DRA and IFNβ; 63.3ºC for IL-10 and CD19; and 65ºC for IFNα, TNF-α, SYK, LYN and 

CD79b, and 30 seconds at 72ºC. Negative and no-template controls were included in each plate 

ran. All reactions were run in duplicates. Reaction duplicates that differed by more than 1 Ct 

were repeated.  

2.7 Statistical analysis: Shapiro-Wilk test was used to evaluate the normality of data. 

Differences in B-cell mortality levels among the groups were analyzed using one-way ANOVA 

followed by post-hoc Tukey test. Real-time PCR data were analyzed using generalized linear 

mixed models based on lognormal-Poisson error distribution, fitted using Marcov chain Monte 

Carlo sampling (mcmc.qPCR package on R version 4.2.0, RStudio, Boston, MA, USA).  

3. Results 

B-cell exposure to LPS (P <0.001) or S. Typhimurium (P = 0.001) significantly 

increased mortality when compared to the negative control group for all pairwise comparison. 
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None of the other treatments led to a significant impact on B-cell viability. A summary of the 

data is presented in Figure 1. 

B-cell exposure to B. pilosicoli led to no change in the expression of the BCR signaling 

component CD79b. In contrast, all other treatments significantly increased CD79b mRNA 

levels. Other components of the BCR activation pathway (CD19, syk, and lyn) were 

significantly downregulated only following B. pilosicoli exposure (-2.8 fold, P = 0.0001; -2.1 

fold, P < 0.0001; and -1.5 fold, P = 0.03, respectively). In contrast, syk mRNA levels was only 

increased when B-cells were exposed to B. hampsonii (2.2 fold, P = 0.02) or B. hyo (1.7 fold, 

P = 0.02), relative to the negative control group. None of the other treatments significantly 

altered the expression of lyn. 

B. pilosicoli decreased B-cell expression of TNF-α (-2.4 fold, P =0.03), but increased 

IFN-β (5.5 fold, P = 0.01) mRNA production relative to the negative control group. B. hyo 

exposure increased the mRNA levels of IFN-α (2.0 fold, P = 0.02) and IFN-β (5.9, P = 0.01). 

S. Typhimurium upregulated the expression of IFN-α (1.9 fold, P = 0.03) and IL-10 (2.1 fold, 

P = 0.03), in relation to the negative control samples. SLA-DRA was upregulated following B. 

hampsonii (2.5 fold, P = 0.01), B. pilo dead (2.4 fold, P = 0.01), B. hyo (1.61 fold, P = 0.05), 

B. KL180 (1.90 fold, P = 0.05), and S. Typhimurium  (1.7 fold increased compared to control, 

P = 0.03), but remained unaffected in the presence of B. pilosicoli. A summary of the RT-PCR 

data is presented in Figure 2. 

Post-inoculation evaluation of the viability of bacterial inocula resulted in no growth of 

the Brachyspira spp. and S. Typhimurium in their respective culture medium. 

4. Discussion  

Here we investigated the T-cell independent B-cell response to enteric pathogens 

associated with grower-finisher diarrhea in pigs. Surprisingly, B. pilosicoli downregulated 

genes involved in B-cell activation and differentiation, and did not trigger the expression of the 

major histocompatibility complex type II (MHC-II, SLA-DRA gene). B. hyodysenteriae, 

different strains of B. hampsonii, S. Typhimurium and killed B. pilosicoli triggered activating 

responses by the host cells. Grower-finisher infectious diarrhea directly impacts profit in 

commercial swine operations [31,32]. Understanding B-cell response to pathogens to which 

antibiotics are largely used in pigs may aid in the development of preventative tools.  

Our data showed that B-cell exposure to all treatments other than B. pilosicoli 

upregulated CD79b expression. After antigen binding to BCR, CD79b is the initial signaling 

trigger involved in B-cell maturation and activation [33,34]. Phosphorylation of the tyrosine-
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based activation motif (ITAM) on CD79b by Src-family kinases activates syk, followed by 

downstream signaling molecules, such as phospholipase C gamma 2 (PLC-γ2) and 

phosphoinositide 3-kinase (PI3K) [27,37]. These molecules form the main BCR signaling 

cascade involved in B lymphocyte cell-cycle progression and survival pathways [38,39]. 

CD79b expression is up-regulated in mice kidneys infected with Staphylococcus aureus [40], 

and in sheep mammary tissue infected with Mycoplasma agalactiae [41]. B. pilosicoli likely 

did not lead to crosslinking of BCR, as no changes in CD79b expression was identified. CD19 

is a co-receptor of the B-cell cell-surface signal-transduction complex (including CD21, CD81, 

and CD225) that is phosphorylated by the src-family kinase lyn upon BCR cross-linking [42]. 

CD19 plays an important role on B-cell activation by reducing the BCR activation threshold, 

and by promoting BCR-independent B-cell expansion through c-MYC protein stability [43,44]. 

CD19 deficient mice and humans respond poorly to transmembrane signals, leading to impaired 

humoral response [45–47]. In contrast, overexpression of CD19 leads to increased humoral 

response and disruption of tolerance mechanisms [48–50]. Its phosphorylation leads to 

membrane recruitment of PI3K and activation of (serine/threonine-protein kinase) Akt and cell 

survival pathway [51]. Moreover, through Akt kinase signaling and tyrosines phosphorylation, 

CD19 is required for MHC-II-mediated downstream signaling [52]. CD19 recruitment of 

downstream signaling intermediates play a role in immunoglobulin-induced activation of B-

cell or their antigen-independent development [53,54]. CD19 also plays a role in TLR9 

signaling pathways in human B cells [55], which is activated by bacterial DNA [56]. We found 

that B. pilosicoli exposure to B-cells downregulated CD19 expression. Although other 

molecules and receptors from CD19-activated pathways were not evaluated in the present 

study, our findings suggest that B. pilosicoli may increase the BCR activation threshold, repress 

B-cell expansion and impair pathogen recognition via MHC-II or TRL-9, thus crippling the 

early B-cell response to infection and potentially inducing tolerance to B. pilosicoli antigens.  

One of the earliest events following BCR activation is phosphorylation of lyn and syk 

protein kinases [57]. Lyn plays a crucial role in activating or inhibiting BCR signaling [24]. It 

can enhance B-cell downstream signaling, phosphorylating ITAMs on B-cell receptor Igα/Igβ 

(CD79a/CD79b) chains triggering the activation of the spleen tyrosine kinase (syk) [58,59]. 

Lyn also phosphorylates tyrosine-based inhibitory motifs (ITIMs) on inhibitory receptors 

(CD22 and FcγRIIB) that suppress BCR signaling [60,61]. Syk binds to the BCR [62], 

phosphorylating not only ITAM tyrosines at CD79a/CD79b but also other proteins, including 

CD19 and BCAP, activating the PI3K pathway, and the SH2 domain-containing leukocyte 

protein of 65 kDa (SLP-65) [63,64]. These signals support further development of B-cells from 
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pro-B to pre-B-cell. Here we showed that the expression of lyn and syk were downregulated 

after B-cell exposure to live B. pilosicoli. Lyn-deficient mice shown reduced numbers of mature 

follicular B-cells, absence of marginal zone and higher proportion of immature B-cells [65,66]. 

Lyn deficiency is also involved in decreased phagocytosis and autophagy upon Pseudomonas 

aeruginosa infection of mice alveolar macrophages [67]. Syk deficiency also impaired the 

differentiation and maturation of B-lineage cells [68–70]. Taken together, the decrease in 

CD19, lyn, and syk expression following B. pilosicoli suggest that the B-cell response to this 

pathogen is weakened from a BCR-dependent or independent activation perspective, potentially 

leading to tolerance.  

SLA-DRA are expressed mainly in antigen presenting cells, and it is a key player in 

extracellular peptide antigen processing and presentation, T-cell dependent response and 

vaccine efficacy [71,72]. In our study, SLA-DRA was upregulated by B-cell treatment with all 

inocula, except for live B. pilosicoli and LPS. Replication of porcine epidemic diarrhea virus 

(PEDV) in bone marrow-derived dendritic cells inhibited expression of SLA-DRA, showing 

PEDV has mechanisms to evade the host immune response [73]. Our results suggest that the 

cell line used recognized all the treatments as foreign antigens, except for live B. pilosicoli. The 

mechanism through which B. pilosicoli escapes antigen processing and presentation may be a 

key feature to enable vaccine development in the future. 

We found increased expression of IFN-α upon B-cell exposure to B. hyodysenteriae, S. 

Typhimurium, and IFN-β following B. hyodysenteriae and B. pilosicoli exposure. Type I 

interferons (IFN-α/IFN-β, T1IFN) are early innate immunity cytokines and have pleiotropic 

effects on the immune response modulation, with direct and indirect effects on B-cells [74]. 

Multiple studies have demonstrated the role of IFN-α/IFN-β as immunoregulatory B-cell 

stimulators during viral infections [74–77]. T1IFN were found to enhance B-cell response and 

activation during the inflammatory process, increasing BCR sensitivity, which is suggested as 

a link between the innate and acquired immune responses [78,79]. In contrast, exacerbated 

exposure to T1IFN has been shown to be harmful to the host, promoting proliferation of self-

reactive B-cells in autoimmune diseases in humans [80]. Thus, the role of T1IFN in response 

to bacterial infection remains to be clarified [81]. Here we found that B. hyodysenteriae and S. 

Typhimurium led to increased levels of IFN-α, when compared to the control group. Exogenous 

or endogenous IFN-α was found to modulate B-cell proliferation and their differentiation into 

antibody-secreting cells [82]. Interestingly, Domeier et al. (2018) found evidence that intrinsic 

B-cell T1IFN signaling causes loss of tolerance in germinal center cells. Also, IFN-α amplifies 

naïve B-cell activation and immunoglobulin production through TLR-9/MyD88-dependent 
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signaling after stimulation with CpG motifs of bacterial DNA [84]. In parallel, IFN-β was 

upregulated by B. hyodysenteriae and B. pilosicoli. IFN-β exposure reduces B-cell capacity to 

respond to antigen mediated signals, focusing its response on immediate innate system 

measures [85]. We postulate that S. Typhimurium and B. hyodysenteriae triggered the observed 

B-cell responses due to, in part, the increased production of IFN-α. Oppositely, B. pilosicoli 

effect on IFN-β only may explain the lack of antigen-based B-cell response.  

TNF-α is one of the earliest responses by B-cells following crosslinking of surface 

immunoglobulins [86]. This molecule is a required autocrine factor for B-cell growth, 

promoting cell differentiation [87]. Our results revealed that TNF-α was significantly 

downregulated following B-cell exposure to B. pilosicoli, but not killed B. pilosicoli or any 

other treatment. In contrast, a previous study using Caco-2 cells found that inactivated B. 

pilosicoli led to the upregulation of TNF-α, while live B. pilosicoli did not significantly change 

its expression levels [88]. Caco-2 are epithelial cells derived from human samples, not pigs. 

This may explain the differences observed here. Multiple bacterial pathogens have evolved to 

directly or indirectly suppress the production of TNF-α, thus facilitating parasitism [89,90]. It 

is plausible that B. pilosicoli suppresses lymphocyte TNF-α production to support its 

periplasmatic lifestyle through a mechanism that remains to be clarified. 

IL-10 plays a role enhancing B-cell proliferation and differentiation, and regulates 

MHC-II antigen presentation [91–93]. We found that S. Typhimurium was the only pathogen 

evaluated in this study to increase IL-10 expression after co-exposure with B-cells. It has been 

shown that Salmonella can induce IL-10 production in mice B-cells in vitro via stimulation of  

TLR2, TLR4, and the myeloid differentiation primary response gene 88 (MyD88) [94]. In 

lymphoblastoid cell lines, S. Typhimurium also induced robust production of IL-10 through 

induction of the signal transducer and activator of transcription 3 (STAT3)-dependent anti-

inflammatory pathway [95]. Among its functions, it has been reported that IL-10 acts inhibiting 

autophagy, through signaling activation of IL10R-STAT3 and AKT-mTOR pathway [96,97]. 

Although we did not investigate those pathways genes, our results corroborate previous findings 

that S. Typhimurium may hijack IL-10-signalling to favor its intracellular lifestyle.  

S. Typhimurium significantly increased B-cell mortality when compared to the negative 

control group. Previous research in vivo and in vitro indicated that Salmonella is able to infect 

and survive in B-cell endosomal-lysosomal compartments [98,99]. These cells act as a reservoir 

for persistence, dissemination and evasion of CD8+ T-cell-mediated responses [100]. This 

mechanism is linked to a negative regulation in NLRC4, inhibiting the secretion of IL-1β and 

its cytotoxic effects, preventing B-cell death by pyroptosis [101,102]. A second study showed 



99 

 

 

that Salmonella could also inhibit B-cell autophagy by activating mTORC1 by secreting its 

virulence protein SopB [103]. This may be linked to the overwhelmingly high amount of 

bacteria to which B-cells were exposed in our study.  

We recognize that there are multiple steps involved in T-independent B-cell activation, 

and the work presented here focused only on a few key players of these complex mechanisms. 

Further work dissecting the downstream effects of the pathways found affected in this study is 

warranted, especially regarding B. pilosicoli interaction with the host. 

Our findings revealed that B. pilosicoli has a profound impact on B-cell activation, both 

in a T-dependent and T-independent manners. An antigenicity spectrum among the other 

Brachyspira tested was also identified, helping explain their varied virulence. S. Typhimurium 

was the only agent to induce B-cell death, among those tested. Further studies on the 

consequences of the pathogen-B-cell interactions identified here are suggested to help clarify 

pathogenesis mechanisms, and may fill in gaps leading to vaccine development. 
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Figure 1. B-cell mortality after 8 hours of exposure to sham-inoculated control (n=6), LPS 

(n=6), B. hampsonii clade II 30466 (B.hampsonii, n =3), B. hyodysenteriae G44 strain (B. hyo, 

n =6), B. pilosicoli (B. pilo, n=6),  B. pilosicoli sonified dead (B. pilo dead, n=3), non-

pathogenic B. hampsonii clade 2 KL180 (B. KL180, n=3), and Salmonella Typhimurium (S. 

Typhimurium, n=6). *-Denotes statistical significance between S. Typhimurium and all groups, 

except LPS (P = 0.001). **-Denotes statistical significance between LPS and all groups, except 

S. Typhimurium (P <0.001). 
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Figure 2. Expression of B-cell activation and proliferation marker genes after 8 hours of 

exposure to sham-inoculated control (n=6), LPS (n=6), B. hampsonii clade II 30466 

(B.hampsonii, n =3), B. hyodysenteriae G44 strain (B. hyo, n =6), B. pilosicoli (B. pilo, n=6),  

B. pilosicoli sonified dead (B. pilo dead, n=3), non-pathogenic B. hampsonii clade 2 KL180 (B. 

KL180, n=3), and Salmonella Typhimurium (S. Typhimurium, n=6). measured by quantitative 

real-time RT-PCR. Bars depict mean fold change (log2) values from eight treatments, relative 

to the negative control group, and error bars represent 95% confidence intervals. **- Denotes 

statistical significance (P <0.05). *- Denotes statistical significance (P = 0.05). 
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Abstract 

Background: Fecal calprotectin is largely applied as a non-invasive intestinal inflammation 

biomarker in human medicine. Previous studies in pigs investigated the levels of fecal 

calprotectin in healthy animals only. Thus, there is a knowledge gap regarding its application 

during infectious diarrhea.  
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This study investigated the usefulness of fecal calprotectin as a biomarker of intestinal 

inflammation in Brachyspira hyodysenteriae and Salmonella Typhimurium infected pigs. 

Results: Fecal samples from pigs with colitis (n = 18) were collected from animals 

experimentally inoculated with B. hyodysenteriae (n = 8) or from sham-inoculated controls 

(n = 3). Fecal samples from pigs with enteritis (n = 14) were collected from animals inoculated 

with Salmonella enterica serovar Typhimurium (n = 8) or from sham-inoculated controls 

(n = 4). For both groups, fecal samples were scored as: 0 = normal; 1 = soft, wet cement; 

2 = watery feces; 3 = mucoid diarrhea; and 4 = bloody diarrhea. Fecal calprotectin levels were 

assayed using a sandwich ELISA, a turbidimetric immunoassay and a point-of-care dipstick 

test. Fecal calprotectin levels were greater in colitis samples scoring 4 versus ≤ 4 using ELISA, 

and in feces scoring 3 and 4 versus ≤ 1 using immunoturbidimetry (P < 0.05). No differences 

were found in calprotectin concentration among fecal scores for enteritis samples, regardless of 

the assay used. All samples were found below detection limits using the dipstick method. 

Conclusions: Fecal calprotectin levels are increased following the development of colitis, but 

do not significantly change due to enteritis. While practical, the use of commercially available 

human kits present sensitivity limitations. Further studies are needed to validate the field 

application of calprotectin as a marker of intestinal inflammation. 

Keywords: biological markers, intestinal inflammation, enteric disease, swine  

Background  

The use of antimicrobials as growth promoters (APG) in pork production has been 

globally discouraged due to the emergence of multi-drug resistant bacterial strains which can 

impose risks to human and animal health [1, 2]. In most countries with significant pork 

production, the current policies on the use of antimicrobial agents have resulted in a need for 

improved on-farm biosecurity, nutritional, husbandry, and welfare practices, as well as the 

development of tools to guide the use of antimicrobials [3]. A non-invasive biomarker for 

intestinal inflammation would result in more judicious therapeutic and nutritional interventions 

during episodes of enteric diseases in commercial operations. 

Swine dysentery (SD) and porcine salmonellosis are intestinal disorders of global 

relevance in grower-finisher pigs. Both diseases are associated with significant economic losses 

due to increased production costs and poor animal performance [4, 5]. Mucohemorrhagic 

diarrhea and colitis (inflammation of the large intestine) are the main clinical signs of SD caused 

https://porcinehealthmanagement.biomedcentral.com/articles/10.1186/s40813-021-00228-9#ref-CR1
https://porcinehealthmanagement.biomedcentral.com/articles/10.1186/s40813-021-00228-9#ref-CR2
https://porcinehealthmanagement.biomedcentral.com/articles/10.1186/s40813-021-00228-9#ref-CR3
https://porcinehealthmanagement.biomedcentral.com/articles/10.1186/s40813-021-00228-9#ref-CR4
https://porcinehealthmanagement.biomedcentral.com/articles/10.1186/s40813-021-00228-9#ref-CR5
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by Brachyspira hyodysenteriae, B. hampsonii and B. suanatina [6]. Currently, the use of 

antimicrobials is the only strategy to prevent and treat this disease [7]. Salmonella enterica 

serovar Typhimurium causes enteritis (inflammation of the small intestine) and watery diarrhea 

in pigs [5, 8]. Even though studies have evaluated vaccination to control salmonellosis in pigs, 

protection is variable due to poor cross-protection across serovars [9, 10], and antimicrobials 

are still used metaphylactically. 

Calprotectin is a 24 kDa calcium binding protein of the S100 family. It accounts for 

approximately 60% of the cytosolic protein in neutrophils and is also found in monocytes [11, 

12]. It is released upon neutrophil activation and displays antimicrobial, antiproliferative and 

apoptotic properties [12, 13]. Interestingly, calprotectin is resistant to intestinal bacteria 

proteases [14]. In human medicine, calprotectin has been used to assess the extent of intestinal 

inflammation [15]. Its concentration in feces is correlated with inflammatory bowel disease 

(IBD) [16, 17], and necrotic enterocolitis in infants [18]. Fecal calprotectin is used to identify 

and aids in distinguishing IBD from irritable bowel syndrome (IBS) [19, 20], and is specifically 

useful to predict disease activity and relapse during treatment [21, 22]. Increased fecal 

calprotectin levels were associated with endoscopic and histological lesions during episodes of 

IBD [23, 24] and can be used to distinguish between inflammatory and non-inflammatory colitis 

in humans [25]. Physicians often apply this concept to distinguish IBD relapses from true 

infectious colitis and diarrhea [21, 25]. Thus, there is a plethora of commercially available kits 

aimed at detecting human calprotectin in feces, ranging from laboratory-intensive ELISAs to 

point-of-care dipsticks. 

Studies focused on swine have investigated calprotectin levels in the feces of healthy 

animals only, suggesting it may be involved in intestinal homeostasis [26, 27]. However, there 

are no reports on the use of calprotectin as a biomarker of intestinal inflammation in disease-

challenged pigs. We hypothesized that, similar to what is observed in humans, pigs with 

intestinal inflammation have increased levels of fecal calprotectin. The swine calprotectin 

S100-A8 subunit amino-acid sequence is 72% similar to the human protein, and the S100-A9 

subunit is 66% similar. Thus, we also hypothesized that commercial kits aimed at human 

calprotectin should also detect the swine protein. Therefore, the objective of this study was to 

evaluate the usefulness of fecal calprotectin as a biomarker of colitis or enteritis in swine using 

commercially available human kits. 

 

 

https://porcinehealthmanagement.biomedcentral.com/articles/10.1186/s40813-021-00228-9#ref-CR6
https://porcinehealthmanagement.biomedcentral.com/articles/10.1186/s40813-021-00228-9#ref-CR7
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Results  

Colitis samples assessment 

Using ELISA, fecal samples that scored 4 (bloody diarrhea) had higher calprotectin 

levels than those that scored 0, 1, or 3 (P = 0.037, Fig. 1A). Using immunoturbidimetry, fecal 

samples that scored 3 and 4 had higher calprotectin levels than those that scored 1 (score 3 

P = 0.039, score 4, P = 0.044 respectively, Fig. 1B). Fecal calprotectin level was positively 

correlated with fecal consistency scores using ELISA (ρ = 0.728; P = 0.001, Fig. 1A) and 

immunoturbidimetry (ρ = 0.80; P = 0.001, Fig. 1B). ELISA was positively correlated with the 

immunoturbidimetry assay (ρ = 0.55; P = 0.017). ROC curve analysis (Fig. 1C) revealed that 

both ELISA (P = 0.002) and immunoturbidimetry (P < 0.001) could reliably diagnose a 

diseased state. Immunochromatographic dipstick tested negative for all samples. 

Enteritis samples assessment 

No differences were found in calprotectin concentration among fecal score groups when 

measured using ELISA (P = 0.098; Fig. 2A) or immunoturbidimetry (P = 0.579; Fig. 2B). 

However, fecal scores 1 and 2 did have numerically higher fecal calprotectin concentrations 

than score 0 using either method. Fecal calprotectin concentration was not correlated with fecal 

consistency scores when analyzed by either ELISA (ρ = 0.536; P = 0.590; Fig. 2A) or 

immunoturbidimetry (ρ = 0.268; P = 0.376; Fig. 2B). The same correlation pattern was 

observed between ELISA and Immunoturbidimetry assays (ρ = 0.464; P = 0.095). ROC curve 

analysis (Fig. 2C) revealed no statistical significance regarding the ability of either ELISA 

(P = 0.56) or immunoturbidimetry (P = 0.51) assays in diagnosing a diseased state. 

Additionally, all samples tested negative when the immunochromatographic dipstick test was 

used. 

Discussion  

Grower-finisher infectious diarrhea in commercial swine operations leads to decreased 

performance and increased production costs associated with treatment and mortality, directly 

impacting profits [4, 5]. To help direct immediate therapeutic and nutritional interventions 

following observation of diarrhea, a non-invasive intestinal inflammation biomarker test to 

differentiate inflammatory from non-inflammatory causes of diarrhea would be beneficial for 

practitioners. In this study, we observed that fecal calprotectin levels, measured by ELISA or 
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immunoturbidimetry, increases following the development of colitis and mucoid or bloody 

diarrhea in pigs challenged with B. hyodysenteriae. However, we did not find any changes in 

fecal calprotectin levels due to enteritis caused by S. Typhimurium. Both methodologies were 

ineffective in discerning between mild, watery diarrhea, and normal feces during colitis or 

enteritis. 

Calprotectin is a calcium binding protein secreted by neutrophilic granulocytes and has 

a role controlling bacterial growth during inflammation [12, 28]. Recruitment of neutrophils to 

the intestinal mucosa leads to neutrophil cell shedding and active secretion of calprotectin to 

the intestinal lumen [12]. Currently, recognized triggers of calprotectin secretion are 

lipopolysaccharide and monosodium ureate [1, 2]. This is in line with findings showing that, in 

humans, bacterial agents lead to higher fecal calprotectin levels than viral [41, 56, 57]. Once 

secreted, calprotectin sequesters essential micronutrients such as iron, zinc, and manganese, 

inhibiting bacterial growth [29, 30]. Fecal calprotectin concentration has been shown to be 

correlated with the number of neutrophils released in the intestinal lumen during inflammation, 

which in humans can be associated with the severity of inflammation [19]. Previous studies 

investigating calprotectin levels in the feces of healthy pigs suggested it may play a role in 

intestinal homeostasis [26]. Lallès et al. [27] observed that the average fecal calprotectin 

concentration from sow samples (13 ± 38 mg/kg of feces) was close to the range described in 

healthy human adults (range 2–47 mg/kg), but the concentrations found from piglet samples at 

birth were lower (24 ± 60 mg/kg) than human newborns (145 ± 78.5 mg/kg). The same authors 

also found very low fecal calprotectin levels in healthy pigs under high sanitary conditions. 

Elevated fecal calprotectin is a common finding in humans with IBD [16, 22]. In humans, 

patients with IBD and IBS have similar clinical signs. Calprotectin is already extensively used 

in human medicine as a biomarker of IBD, as it can help distinguish IBS from IBD, and detect 

recurrent IBD during treatment [20, 25]. Fecal calprotectin levels reported from dog samples 

can be used to discern between animals with different causes of chronic inflammatory 

enteropathies such as steroid‐responsive/refractory enteropathy and immunosuppressant‐

responsive/‐refractory enteropathy, and animals with food‐responsive enteropathy or antibiotic‐

responsive enteropathy before treatment [31, 32]. 

Here elevated fecal calprotectin levels in pigs were associated with mucoid or 

haemorrhagic colitis, but not enteritis. While further studies using larger populations are needed 

to validate these results, our data suggests that fecal calprotectin could be a potential tool used 

to diagnose severe inflammatory colitis, particularly by untrained observers who may, for 

example, miss blood staining in feces when pigs are housed in large groups. It may also help 
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distinguish bacterial colitis from other causes of diarrhea in pigs, thus, contributing to a more 

judicious use of antimicrobials for pork production. We found that mucoid or mucohemorragic 

feces from pigs with colitis contained the highest calprotectin concentration. Multiple previous 

reports have characterized the accumulation of neutrophils, a source of antimicrobial peptides 

such as calprotectin, on the surface of the colonic mucosa during B. hyodysenteriae and B. 

hampsonii infection in pigs [33,34,35,36]. Here we found evidence that severe SD clinical signs 

are associated with increased fecal calprotectin levels, providing further evidence of the 

importance of neutrophils in the pathogenesis of swine dysentery. 

In swine, S. Typhimurium invades epithelial cells of the small intestine. It can invade 

colonocytes as well, leading to inflammatory diarrhea with a marked increase in mucosal 

neutrophil infiltration [5, 8, 37]. Despite this, we did not observe a significant increase in fecal 

calprotectin levels following inoculation with S. Typhimurium, regardless of the assay used. 

Our findings differ from previous studies that found increased fecal calprotectin concentration 

during S. Typhymurium infection in rats [38, 39], and Salmonella spp. infection in humans [40]. 

Human patients with severe or moderate bacterial gastroenteritis and fecal mucus have 

increased fecal calprotectin, but those with mild diarrhea do not [41]. Mucoid feces is not a 

feature of swine salmonellosis, but it is associated with Brachyspira spp. [5]. Moreover, it has 

been shown that S. Typhimurium overcomes the antimicrobial effect of calprotectin by 

expressing a high affinity zinc transporter (ZnuABC) [39, 42]. We recognize that the lack of 

histopathology data from either sample cohort is a limitation here and suggest the collection of 

such samples in future studies. 

The literature is contradictory regarding the association between high fecal calprotectin 

levels and lesion site. There are reports that either ileal or colonic lesions can both be monitored 

using fecal calprotectin as an indicator of endoscopically active Crohn’s disease (CD) 

[16, 43,44,45]. In contrast, other studies have found that the discriminatory power of fecal 

calprotectin is greater in ileocolonic and colonic CD, than in jejunal or ileal CD [46,47,48]. 

Zittan et al. [47] postulated that the slow intestinal transit in the colon could increase 

calprotectin degradation through intestinal proteases, thereby reducing its concentration in 

feces. We believe that the lack of difference in calprotectin levels in enteritis samples was due 

to the proximal location of the lesions, which were most likely associated with the small 

intestine [49]. Differently from humans, pigs have a functional cecum that may contribute to 

this disappearance effect by luminal proteases. Furthermore, age may as well impact luminal 

calprotectin clearance. The gastrointestinal tract length of pigs used in this study were a portion 

of the size of a finisher pig, together with the functional changes that take place following 
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weaning these could be factors that influence the disappearance of calprotectin released in the 

small intestine. 

Interestingly, higher concentrations of fecal calprotectin were found when measured 

using the immunoturbidimetry assay compared to ELISA in both sample cohorts. For human 

samples, ELISA based on monoclonal antibodies is the gold standard used to quantify fecal 

calprotectin levels. It is specific to calprotectin heterodimeric and polymeric complexes. 

However, ELISA is laborious and time-consuming [13, 50] when compared to the a particle 

enhanced turbidimetric immunoassays (PETIA), based on polystyrene nanoparticles coated 

with calprotectin-specific antibodies binding to their specific target within the extracted 

samples. Subsequent quantification of the agglutinated calprotectin-nanoparticle complex 

detected by light absorbance (turbidity) can be adapted to several commercially available 

clinical chemistry analyzers and has been proposed as a rapid response test [51]. Labaere et al. 

[52] compared different calprotectin detection methods (three rapid quantitative 

immunochromatografic tests, two enzyme-linked immunosorbent assays, and one automated 

fluoroimmunoassay), and reported significant variations in the calprotectin levels detected. 

Juricic et al. [53] reported fecal calprotectin concentrations using a commercial ELISA kit to 

be significantly lower than a turbidimetric immunoassay. Oyaert et al. [54] observed 

satisfactory diagnostic performance between six different fecal calprotectin immunoassays (two 

ELISA, two chemiluminescent immunoassays (CLIA), one fluoroenzyme immunoassay 

(FEIA), and one PETIA), even though there were discrepancies in calprotectin values detected 

between these kits. These reports are consistent with our findings that different assays resulted 

in different values for fecal calprotectin. It is worth mentioning that the kits evaluated in this 

study used monoclonal antibodies specific for human calprotectin, therefore, the low 

calprotectin levels found by ELISA may be due to the lack of cross reactivity with the swine 

protein, as previously reported [26]. While we understand the limitation of this approach, 

commercial kits for fecal calprotectin detection are only available for humans. In addition, there 

are multiple point-of-care kits commercially available that could be translated into farm-

friendly tools. Nevertheless, we still found evidence that human tests can be used in veterinary 

medicine, taking advantage of this previously developed infrastructure. However, test 

sensitivity must be further evaluated and optimized for swine, if deemed necessary by future 

investigations.  

We recognize that there are multiple other causes of enteritis and colitis in pigs; we 

believe that B. hyodysenteriae and S. Typhimurium are also representative of these syndromes. 
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We also appreciate that a limited number of samples were utilized in both COL and ENT 

groups. This likely limited some of our findings related to the less severe fecal scores. 

Conclusions  

This initial data suggests that fecal calprotectin only peaks to detectable levels following 

colitis, but not enteritis. The approach used was unable to discern between mild-diarrhea and 

healthy feces, or when pigs only developed enteritis. Further investigations are suggested as 

this approach has the potential to support the judicious use of antimicrobials for pork production 

through the differentiation of infectious from non-infectious causes of colitis. 

Methods 

Animal trials and fecal samples 

Two independent trials (one for each pathogen) were performed where pigs were obtained from 

the same PRRSV negative, high-health herd with no gastrointestinal clinical signs and 

historically free from swine dysentery and salmonellosis. Animals were housed and allowed to 

acclimate in a BSL-2 animal care facility for 7 days prior to inoculation. Colitis samples 

(COL, n = 18) were obtained from 9-to-10-week-old barrow pigs (housed in pens with 6 

pigs/pen) experimentally inoculated (n = 8) thrice over 72 h with Brachyspira 

hyodysenteriae G44 (obtained from a clinical case), the etiologic agent of swine dysentery, or 

from sham-inoculated controls (n = 3). A commercial starter diet, unmedicated, fed ad libitum 

was used. Pigs were intragastrically inoculated with 50 mL liquid media averaging 

1.69 × 109 genome equivalents/mL as previously described [35]. A summary of the samples 

used from this trial is shown on Table 1. The development of swine dysentery was confirmed 

by associating clinical signs, positive fecal B. hyodysenteriae culture and gross necropsy 

lesions (data not shown). Enteritis samples (ENT, n = 14) were collected from pigs 

experimentally inoculated with Salmonella enterica serovar Typhimurium var Copenhagen 

(n = 9, isolated from a clinical case), or from non-infected controls (n = 4). After a 7-days 

acclimation period, pigs were orally inoculated twice within 4 h with 1 mL containing 

3.3 × 109 CFU/mL/pig of S. Typhimurium, as previously described [55], or 1 mL of sterile 

saline solution (non-infected controls). Pigs were fed a diet that met the minimum requirements 

for this age, and were group housed in pens with 8 animals [55]. Sample summary is also shown 

in Table 1. All animals tested negative by culture for their inoculation agent upon arrival at the 

BSL-2 facility [35, 55]. Daily monitoring for pathogen of interest shedding was also performed 
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as previously described [35, 55], and only positive samples were used in this study. 

Briefly, Brachyspira spp. culture was performed using BJ agar in anaerobic chambers at 42 °C 

for up to 10 days. Salmonella samples were cultured in brilliant green agar and verified by broth 

culture using enriched selenite-cysteine broth. As expected, fecal scores for this trial ranged 

from 0–2. The development of salmonellosis was confirmed by fecal culture, gross necropsy 

lesions (no signs of typhlitis or colitis were observed), clinical signs, intestinal levels of 

antioxidant enzymes and performance parameters (data not shown). Feces from both trials were 

collected following digital stimulation, and only one sample per pig per score was included. 

Scoring followed a previously developed fecal consistency rubric [35]: 0 = normal; 1 = soft, wet 

cement; 2 = watery feces; 3 = mucoid diarrhea; and 4 = bloody diarrhea. All fecal samples were 

obtained from individual pigs and stored at -80ºC until processing for analysis. 

Fecal sample extraction 

Fecal samples were processed according to the kit manufacturers’ instructions, with minor 

changes as described below (Bühlmann Calprotectin ELISA EK-CAL, Bühlmann Laboratories 

AG, Switzerland). For each sample, between 50 and 100 mg of feces were weighed into a sterile 

polypropylene tube (15 mL, VWR Scientific Products, Suwanee, GA, USA). Extraction buffer 

was added, adjusting the reaction volume to each sample weight to obtain a final 1:10 ratio. 

Extraction tubes were individually vortexed for 30 s (Fisher Vortex Genie 2, Fisher Scientific, 

Pittsburgh, PA, USA) at maximum speed and incubated for 30 min at room temperature on a 

shaker at 400 rpm (G-25 Incubator Shaker, New Brunswick Scientific Co., Inc., Edison, NJ, 

USA). Samples were vortexed again for 30 s, a 1.5 mL aliquot was transferred to a 2 mL sterile 

microfuge tube and centrifuged at 3000 g for 5 min. Finally, the supernatant was transferred to 

a 1.5 mL microfuge tube and stored at -20 °C until analysed. 

Enzyme-linked immunosorbent assay (ELISA)  

ELISA was carried out following the manufacturer’s instructions (Bühlmann Calprotectin 

ELISA EK-CAL, Bühlmann Laboratories AG, Switzerland). Fecal extracts were thawed and 

homogenized prior to analysis. Initially, 100 µL of incubation buffer (blank, negative control), 

five calibrator samples (100 µL/well, ranging from 30 to 1800 µg/g; Additional file 1: Table 

1), and low and high control samples (100 µL/well) were included on each microtiter plate 

precoated with anti-calprotectin monoclonal antibodies (mAb). Finally, 100 µL of fecal extract 

per sample was analyzed. All samples were analyzed in duplicates, including extraction 

controls. Following dispensing of samples and controls, reaction plates were incubated for 
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35 min using an orbital plate shaker at 450 rpm, at room temperature. After incubation, plates 

were washed three times for 30 s with 300 µL of wash buffer per well. Next, each sample was 

incubated and mixed for 35 min with 100 µL of enzyme label anti- mAb conjugated with 

horseradish peroxidase (HRP). The wash step was repeated 5 times as described above and 

immediately after; the color reaction was induced using 100 µL of tetramethylbenzidine (TBM). 

The plate was covered with a plate sealer (Bühlmann Laboratories AG, Switzerland) to prevent 

TBM degradation due to exposure to light, and incubated for 15 min on a plate shaker at 

400 rpm at room temperature. The reaction was stopped by adding 100 µL of 0.25 M sulfuric 

acid to each well and absorbance assessed at 450 nm using a microplate reader (Biotek Epoch, 

Biotek Instruments, Winooski, Vermont, USA). Calprotectin level was expressed as 

micrograms per gram (μg/g) of feces and values are reported as the mean value for both 

duplicates. 

Immunoturbidimetry assay 

Fecal extracts were thawed and analyzed using the fCal Turbo assay (BÜHLMANN, 

Laboratories AG, Switzerland). This assay was adapted to be performed on a plate reader. 

Reaction buffer (150 µL) and immunoparticles (30 µL) were pipetted into all wells of a test 

plate. Six calibrator samples (10 µL/well, ranging from 0 to 2207.6 µg/g; Additional file 1: 

Table 2) were included in each plate. Ten µL of fecal extract per sample was tested in duplicate. 

Absorbance was measured at 546–580 nm using a microplate reader (Biotek Epoch, 

Biotek Instruments, Winooski, Vermont, USA) using the Gen5 Data Analysis software 

interface (Biotek Instruments, Winooski, Vermont, EUA). 

Immunochromatographic assay 

Samples were also analyzed using a point-of-care dipstick test for detection of calprotectin in 

feces (Actim calprotectin rapid test, Medix biochemica, Espoo, Finland) following the 

manufacture’s instructions. This is a semi-quantitative test with a detection range of 12.5 to 

10,000 μg of calprotectin/g of human feces. Briefly, 1 g from each fecal sample was brought to 

room temperature and added to the dilution buffer container. The container was manually 

shaken, and the detection stick was inserted in the container once the sample was diluted. 

Results were read after 10 min contact between the test strip and the sample. 
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Statistical analysis  

One fecal sample from the COL group (the only score 2) was removed from the analyses but is 

still shown in the plots for visual comparison only. Analyses were performed using SPSS (IBM‐

SPSS, Chicago, IL, USA). Differences in calprotectin levels among fecal score groups were 

analyzed using the Kruskal–Wallis test. When there was a significant overall group difference, 

the Dunn’s post-hoc test was used to assess pairwise differences. The association between 

calprotectin concentration and fecal consistency score, as well as between ELISA and 

Immunoturbidimetry assays, was assessed by determining the Spearman’s correlation 

coefficient (ρ). Alpha level for determination of significance was 0.05. A receiver operator 

characteristic (ROC) curve analysis was performed to assess the diagnostic efficiency of each 

diagnostic method. Fecal scores ≥ 2 were used as the clinical threshold for diarrhea (positive 

sample). 

List of abbreviations 

CD: Crohn’s disease; CLIA: Chemiluminescent immunoassay; CS: Colitis samples; ELISA: 

Enzyme-linked immunosorbent assay; ES: Enteritis samples; FEIA: fluoroenzyme 

immunoassay; IBD: Inflammatory bowel disease; IBS: Irritable bowel syndrome; HRP: 

Horseradish peroxidase; mAb: Anti-calprotectin monoclonal antibodies; PETIA: particle 

enhanced turbidimetric immunoassay; PRRSV: Porcine reproductive and respiratory syndrome 

virus; SD: Swine dysentery; TBM: tetramethylbenzidine; ZnuABC: high affinity zinc 
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  Table 1. Summary of fecal samples used in this study 

Fecal Score Inoculation group Calprotectin group 
Collection day 

(dpi) 

0 Control-SD Colitis 0 

0 Control-SD Colitis 0 

0 Control-SD Colitis 5 

1 SD Colitis 9 

1 SD Colitis 6 

1 SD Colitis 8 

1 SD Colitis 8 

1 SD Colitis 5 

2 SD Colitis 5 

3 SD Colitis 5 

3 SD Colitis 5 

3 SD Colitis 15 

3 SD Colitis 8 

3 SD Colitis 9 

4 SD Colitis 7 

4 SD Colitis 10 

4 SD Colitis 5 

4 SD Colitis 8 

0 Control-ST Enteritis 2 

0 Control-ST Enteritis 3 

0 Control-ST Enteritis 5 

0 Control-ST Enteritis 5 

1 ST Enteritis 2 

1 ST Enteritis 1 

1 ST Enteritis 5 

1 ST Enteritis 5 

1 ST Enteritis 4 

2 ST Enteritis 2 

2 ST Enteritis 2 

2 ST Enteritis 3 

2 ST Enteritis 2 

2 ST Enteritis 2 

       SD Swine dysentery, samples from pigs inoculated with B. hyodysenteriae, ST 

      Salmonella Typhimurium, samples from a pigs inoculated with S. Typhimurium, 

      Dpi Days post-inoculation. 
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Figure 1. Calprotectin concentration in colitis fecal samples (COL, µg/g) from pigs challenged 

with B. hyodysenteriae. A ELISA assay; B Immunoturbidimetry assay; C ROC curve analysis 

plot (Turb – immunoturbidimetry assay). Stars denote a significant difference (P < 0.05) 

between fecal scores. Bars denote median, with interquartile range shown error bars. 

(ρ = Spearman’s correlation coefficient). 
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Figure 2. Calprotectin concentration in enteritis fecal samples (ENT, µg/g) from pigs 

challenged with S. Typhimurium. A ELISA assay; B Immunoturbidimetry assay; C ROC curve 

analysis plot (Turb – immunoturbidimetry assay). Stars denote a significant difference 

(P < 0.05) between fecal scores. Bars denote median, with interquartile range shown error bars. 

(ρ = Spearman’s correlation coefficient). 

 

 

Supplementary Table 1. Summary of calibrator and reaction control results for ELISA assays 

 

 

Supplementary Table 2. Summary of calibrator and reaction control results for 

Immunoturbidimetry assay 

Reagents Manufacturer predicted value (µg/g) Measured value (n=2, µg/g) 

Calibrator 1 0 0 

Calibrator 2 55.3 0 

Calibrator 3 220.6 536.119 

Calibrator 4 552.3 1.127.235 

Calibrator 5 1104.1 1.399.032 

Calibrator 6 2207.6 1.892.208 

Low control 68-104 0 

High control 228-342 602.765 

 

 

 

Reagents Manufacturer predicted value (µg/g) Measured value (n=2, µg/g) 

Blank  N/A 24.601 

Calibrator A 30 30 

Calibrator B 90 89.999 

Calibrator C 300 300 

Calibrator D 900 900.001 

Calibrator E 1800 1800.031 

Low control 66-171 127.436 

High control 303-561 408.966 
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Supplementary Figure 1. Representative H&E stained sections of formalin fixed colon (COL 

group) and ileum (ENT group) samples. 
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