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RESUMO 

 

A interação genótipos por ambientes (GxA) é um fator complicador do melhoramento 

de milho. Selecionar híbridos que apresentem comportamento estável, ao longo dos locais e 

anos, é essencial para o programa. Essa característica ganha ainda mais importância para os 

programas voltados para a segunda safra. A inclusão de ferramentas de predição genômica, nos 

programas de melhoramento de milho, tem sido cada vez mais frequente. A seleção genômica 

não somente permite a redução do tempo necessário, para a realização de um ciclo de 

melhoramento, mas também aumentar a quantidade de genótipos em estudo, sem aumentar 

significativamente os custos com fenotipagem. Há diversos relatos das vantagens da inclusão 

da GxA nos modelos de predição. Entretanto, há poucos relatos de estudos visando predizer a 

estabilidade produtiva em híbridos de milho. Diante do exposto, o presente trabalho foi 

realizado com o intuito de verificar a viabilidade de predizer a estabilidade em híbridos de 

segunda safra e definir estratégias simples e eficientes para lidar com os cenários reais de 

ensaios Multiambientais. Foram realizados dois trabalhos de pesquisa. Para este estudo, foi 

utilizado um conjunto de dados de um programa privado de melhoramento de milho. Mais de 

1300 híbridos foram avaliados, em 12 ambientes distintos, durante as safrinhas de 2012/13 e 

2013/14. O conjunto de dados foi subdivido em três: 1) 185 híbridos comuns ao longo dos seis 

ambientes em 2012/13; 2) 309 híbridos avaliados nos seis ambientes de 2012/13; 3) 710 

híbridos avaliados nos seis ambientes de 2013/14. O conjunto 1 foi utilizado no primeiro 

trabalho, enquanto os conjuntos 2 e 3 no segundo. No primeiro trabalho, as predições de nove 

índices de adaptabilidade e estabilidade foram comparadas com uma abordagem 

multiambiental, em um cenário de balanceamento genético, ao longo dos ambientes. Foi 

utilizado o modelo BRR (Bayesian Ridge Regression), e as capacidades preditivas foram 

aferidas via validação cruzada (10-fold). Os índices da distância euclidiana e MHPRVG (Média 

Harmônica da Performance Relativa dos Valores Genéticos) se mostraram superiores à 

abordagem multiambiental. No segundo trabalho, o modelo BRR foi mantido, entretanto foram 

considerados quatro cenários de predição: i) ambiente-único; ii) índices de estabilidade; iii) 

multiambiental (ME) desconsiderando GxA; e iv) ME incluindo a GxA. Além disso, foram 

considerados dois esquemas de validação cruzada: CV1 (10-fold) e CV2 (predição de ambientes 

inteiros, utilizado para a abordagem ME). O índice da distância euclidiana não se mostrou 

viável, já a utilização da MHPRVG mostrou-se consistente para ambos os conjuntos de dados. 

Considerando CV1, a inclusão da interação GxA não foi vantajosa, aumentando o tempo 

necessário para as predições, mas sem ganhos (2012/13) ou com ganhos marginais (2013/14) 

na capacidade preditiva. Considerando CV2, iii e iv apresentaram capacidades preditivas muito 

baixas. De forma geral, no segundo trabalho, a abordagem ME (iii) foi superior aos índices de 

estabilidade (ii), entretanto a utilização do índice MHPRVG, como estratégia para predizer a 

estabilidade de híbridos de milho de segunda safra, mostrou-se viável nos dois trabalhos.  

        

Palavras-chave: Zea mays. Interação genótipos por ambientes. Seleção genômica. Índices de 

estabilidade. MHPRVG. 

 

  



ABSTRACT 

 

The genotype by environment interaction (GxE) is a major factor in maize breeding. 

Therefore, it is essential to select genotypes that are stable across locations and over the years. 

Genotype stability is even more important for second season maize breeding programs. The use 

of genomic prediction tools in maize breeding has been frequent. Genomic selection not only 

reduces the time required per breeding cycle but also allows to study of a higher number of 

genotypes without significantly increasing the phenotyping costs. Several reports highlight the 

advantages of including the GxE in the prediction models. However, to predict maize stability 

has been scarcely reported. Given the above, the present work was carried out aiming to verify 

the feasibility of predicting second season maize stability and to define simple and efficient 

strategies to deal with real scenarios of multi-environment trials. Two research works were 

performed. For this study, a private maize breeding dataset was used. Over 1300 maize hybrids 

were assessed across 12 environments during the 2012/13 and 2013/14 second seasons. The 

dataset was split into three: 1) 128 hybrids that were common across the six 2012/13’s 

environments; 2) all 309 hybrids assessed in the six 2012/13’s environments; 3) all 710 hybrids 

assessed in the six 2013/14’s environments. Dataset 1 was used in the first research work, while 

datasets 2 and 3 in the second one. In the first work, the predictions of nine adaptability and 

stability indices were compared to a multi-environmental approach under a genetically balanced 

(across the environments) scenario. A BRR (Bayesian Ridge Regression) model was used, and 

the predictive abilities were measured via cross-validation (10-fold). The Euclidean Distance 

and MHPRVG (harmonic mean of the relative performance of the breeding values) indices 

outperformed the multi-environmental approach. In the second work, the BRR model was 

maintained, however, four prediction scenarios were considered: i) single-environment; ii) 

stability indices; iii) Multi-environmental (ME) without including GxE, and iv) ME including 

GxE effects. In addition, it was considered two cross-validation schemes: CV1 (10-fold), and 

CV2 (whole environment predictions, ME only). The Euclidian distance index did not prove 

feasible, on the other hand, the MHPRVG results were consistent for both datasets. Considering 

CV1, the inclusion of GxE was not advantageous, increasing the time required for predictions 

either without (2012/13) or with marginal gains (2013/14) in predictive ability. Considering 

CV2, iii e iv presented very poor predictability. In general, considering the second work, the 

ME approach (iii) outperformed the stability indices (ii), however, in both works, the use of 

MHPRVG index has proved feasible as a strategy to predict the stability of second season maize 

hybrids.        

 

Keywords: Zea mays. Genotypes-by-environments interaction. Genomic selection. Stability 

index. MHPRVG. 
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PRIMEIRA PARTE 

1 GENERAL INTRODUCTION 

The importance of maize for Brazilian agriculture is undeniable. In the last 20 years, 

Brazil’s maize productivity has increased by over 145 kg ha-1 per year (Von Pinho; Silva; 

Oliveira, 2022). As Brazil is a tropical country, Brazilian maize farmers face intense challenges, 

such as pests and disease pressures, and above all drought conditions, especially in the second 

season (ANDREA et al., 2018). The genotype by environment interaction (GxE) is one of the 

major challenges faced by maize breeders. The GxE plays a crucial role in the genotype 

selection process (VON PINHO; SILVA; OLIVEIRA, 2022).  

The study and better understanding of this interaction aid the breeder to overcome the 

GxE challenges. Breeders may minimize or even capitalize on the GxE effects. In this scenario, 

it is essential to select genotypes that are stable across locations and over the years. Several 

methodologies have been developed and reported aiming to identify stables genotypes.  

Wricke (1965) proposed to measure the contribution of a given genotype to the GxE, in 

a way that stable genotypes are those whose least contribute to the interaction. Eberhart and 

Russel (1966) presented a regression approach to study the stability of the genotypes, in which 

the stable genotypes present a predictable behavior over the environment. Annicchiarico (1992) 

suggests a “risk of adoption” index, in which the higher the risk the lower the stability of the 

genotype. In addition, other methodologies have been proposed over the years, such as AMMI 

(GOLLOB, 1968; MANDEL, 1969, 1971) and GGEBiplot (YAN et al., 2000). 

Since its first proposal (MEUWISSEN; HAYES, B. J.; GODDARD, 2001), genomic 

prediction (GP) methods have become an important tool in plant breeding pipelines. Heslot et 

al. (2014) highlight that GP shortens the time required to complete a breeding cycle, increasing 

the breeding program efficiency. In addition, the implementation of GP tools allows to increase 

the number o genotypes under studies without significantly increasing phenotyping costs. 

Beyene et al. (2019) reported cost reductions of up to 32% by including GP tools in tropical 

maize breeding.  

Many reports can be found related to how to improve GP approaches. Dias et al. (2018) 

achieve predictive gains by including non-additive effects in the prediction models. The 

advantages of modeling the GxE in the GP approach have been widely reported (ACOSTA-

PECH et al., 2017; BURGUEÑO et al., 2012; DIAS et al., 2018, MAGETO et al., 2020; WANG 

et al., 2020). The opportunity of using environmental covariables has been highlighted by 
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Costa-Neto, Crossa e Fritsche-Neto (2021), Gillberg et al. (2019) and Jarquín et al. (2021). In 

addition, Montesinos-López et al. (2021) present the use of deep learning in GP, while Atanda 

et al. (2021) and Fristche-Neto et al. (2021) published strategies and guidelines to optimize 

training populations. However, predicting maize stability has been scarcely reported 

Given the above, the present work was carried out aiming to verify the feasibility of 

predicting second season maize stability and to define simple and efficient strategies to deal 

with real scenarios of multi-environment trials.  

In the first chapter, we investigated the prediction performance of several stability 

indices using a real second season maize dataset. We evaluated nine stability indices and 

compared them to a Bayesian multi-environmental approach under a genetically balanced 

scenario. In the second chapter, two unbalanced datasets were used to verify the feasibility of 

maize stability predictions and to identify the best strategies to lead with multi-environmental 

scenarios. Four strategies were evaluated under two different cross-validation schemes.     
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Directly predicting maize hybrid’s grain yield stability: Is it an efficient strategy? 

Eric Vinicius Vieira Silva 

Abstract – Tropical agriculture provides intense climatic challenges. Although its relevance, 

the second season presents greater crop risks primarily due to lower water availability. 

Furthermore, the genotypes-by-environments (GxE) interaction is even more challenging to 

maize breeding in tropical conditions. In this scenario, the identification of highly stable maize 

hybrids is a powerful strategy to minimize the GxE effects. The genomic prediction (GP) 

approach has been increasingly employed in plant breeding, and the inclusion of GxE effects 

in the GP models is an efficient strategy to improve prediction accuracy. However, multi-

environmental GP is computationally demanding and time-consuming. Therefore, simpler, and 

easier strategies could be applied to perform GP to select highly phenotypic stable genotypes. 

The objective of this work was to identify simple and efficient strategies to perform genomic 

selection by directly predicting single-cross maize hybrids' stability. Nine indices were 

estimated using a balanced dataset of 128 maize hybrids evaluated over six environments. 

Genomic predictions were performed by applying a Bayesian Ridge Regression model. Ten 

rounds of 10-fold cross-validation were performed to evaluate predictive ability (PA) and 

accuracy (ACC). Considering the nature of the dataset, seven out of nine indices present 

satisfactory PA and ACC, fluctuating from 0.17 to 0.31, and from 0.33 to 0.61, respectively. 

On average, indices predicting outperform the Bayesian Multi-Environment approach by 

29.7%, considering the seven well-predicted indices. Wricke’s ecovalence index and the main 

effect of genotypes present better performance, however, considering larger datasets, the 

Euclidian Distance and the Harmonic Mean of the Relative Performance of the Breeding Values 

(MHPRVG) indices should be more adequate. 

Keywords: Zea mays; Genotypes-by-environments interaction; Genomic selection; Stability 

index; Bayesian Multi-Environment approach. 
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Introduction  

The great importance of the second season, or safrinha, maize for Brazilian agriculture 

is undeniable. However, in tropical agriculture, maize farmers face more intense challenges, 

such as greater pests and disease pressures. Furthermore, according to Andrea et al. (2018), 

water deficit stress is the major limiting factor for tropical maize yielding. 

Even though its relevance, the second growing season presents greater crop risks 

requiring accurate planning in terms of cultivar choice, planting date, and crop management. 

The genotypes-by-environments interaction (GxE) is one of the major challenges faced by 

maize breeders. A better understanding of the GxE provides valuable information for hybrids 

selection, breeding zones, or mega-environments definition, as well as specific genotypes 

recommendation to target environments (Von Pinho; Silva; Oliveira, 2022).   

In this scenario, the identification of highly stable maize hybrids is critical for maize 

farmers and breeding companies regarding the allocation, recommendation, and adoption of the 

hybrid.  

Several methodologies have been developed to help plant breeders identify and select 

stable genotypes, such as Wricke’s ecovalence (Wricke, 1965), Annicchiarico’s index 

(Annicchiarico, 1992), AMMI (Gollob, 1968; Mandel, 1969, 1971), GGEBiplot (Yan et al., 

2000), Eberhart and Russel’s stability parameters (Eberhart and Russel, 1966), and others. 

However, to study the GxE, it is required the evaluation of the genotypes in multi-

environmental trials (MET), which represents high costs for the breeding company.  

With the constant reduction in genotyping costs and the increase in phenotyping costs, 

genomic prediction (GP) and selection (GS) approaches have been increasingly employed in 
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plant breeding programs (Volpato; Bernardeli; Gomez, 2021). Using this powerful prediction 

tool, it is possible to reduce the number of hybrids to be phenotypically evaluated, reducing 

phenotyping costs. Furthermore, the main benefit of GP is to select individuals based only on 

their genotypes, increasing the rate of genetic gain per unit of time.  

Recent studies have demonstrated the possibility of incorporating the GxE into the 

genomic prediction models. Burgueño et al. (2012) showed that prediction accuracy could be 

improved by modeling GxE. Later, Acosta-Pech et al. (2017) achieved up to 22% more 

predictive ability when including GxE into specific (SCA) and general (GCA) combining 

ability models, resulting in higher accuracy in the prediction of untested maize hybrids. In its 

turn, Dias et al. (2018) demonstrated the benefits of including GxE in additive and additive-

dominance models to predict drought tolerance in maize single-cross hybrids. Furthermore, 

Wang et al. (2020) highlight the benefits of using a training population evaluated over multiple 

years to increase prediction accuracy.   

Modeling GxE is particularly useful in unbalanced trials, a common scenario in most 

breeding programs. The GP models might be used to predict non-evaluated genotypes in target 

environments, and even to predict complete environments using genetic-environmental 

covariates (Jarquin et al., 2021).  

Although the inclusion of GxE effects in GP models is of utmost useful, in real situation 

scenarios, such predictions are quite computational demanding and time-consuming when using 

a Bayesian framework (Dos Santos et al., 2020; Hamazaki and Iwata, 2022; Silveira et a., 2019; 

Wang et al., 2015; Wang et al., 2017; Montesinos-López et al., 2019a). Therefore, simplified, 

and efficient strategies to deal with GxE might be necessary.  
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The objective of this work was to identify simple and efficient strategies to study the 

genotypes by environment interaction by directly predicting the stability of single-cross maize 

hybrids. 

Materials and methods 

Phenotypic data 

A dataset of 128 maize hybrids were evaluated for grain yield (t ha-1) in six different 

environments during the safrinha of the 2012/2013 crop season (Table 1). The maize hybrids 

were evaluated under incomplete block designs, with a variable number of replicates, in 5-m-

wide four rows spaced 0.5 m (between rows) plots.  

Table 1. Grain yield means and coefficient of variation of maize single-cross hybrids cultivated 

across six environments during the safrinha of the 2012/2013 crop season. 

Environment GY mean (t ha-1) CVe (%) 

E1 – Paraúna/GO 6.70 27.88 

E2 – Riverlândia/GO 4.41 32.38 

E3 – Chapadão do Céu/GO 4.84 28.03 

E4 – Sorriso/MT 5.70 38.57 

E5 – Rio Verde/GO 4.29 30.12 

E6 – Campo Novo do Parecis/MT  5.20 35.62 

CVe: coefficient of variation. 

These maize hybrids were obtained from crosses of conventional inbred and double 

haploid (DH) lines from different backgrounds (Tropical, subtropical, and temperate regions). 

The lines characterization and heterotic groups were described by Cantelmo et al. (2017a). 

Genotypic data 

The parental maize lines were genotyped by Diversity Arrays Technology company. 

23153 DArTs markers were generated. The markers were filtered by adopting a threshold of 

5% of Minor Allele Frequency (MAF). The imputation of missing markers data was performed 
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based on the markers’ mean using the rrBLUP package (Endelman, 2011), however, markers 

that present more than 50% of missing data were removed. 

After filtering, a panel of 21683 DArTs markers was used to build the genomic 

relationship (G) matrix using VanRaden’s method (VanRaden, 2008). The hybrids markers 

panel was obtained from the combination of the parental lines, then the G matrix genomic was 

built.  

Analysis of phenotypic data 

First, individual analyses, by the environment, were performed, aiming for a better 

understanding of the dataset. The components of variance were estimated using a mixed model 

approach. For this purpose, the following model was used: 

Y = Xβ + Zbub + Zgug + ε 

where Y is the vector of the phenotypic data; β is the vector of the fixed effect of the 

replicates and X is the incidence matrix associated with the fixed effect of the replicates; ub is 

the vector of the random effect of the blocks nested within the replicates, with ub ~ N (0, Ibσ
ub

2 ); 

ug is the vector of random effects of the genotypes, with ug ~ N (0, Igσ
ug

2 ); Zb and Zg are the 

incidence matrix associated with the vectors ub and ug, respectively; and ε is the vector of the 

residuals, with ε ~ N (0, Iε σε 

2 ); σub

2 , σug

2 , and σε
2 are the components of variance of the blocks 

within replicates, genotypes, and residuals, respectively, while Ib, Ig, and Iε are the identity 

matrices associated with ub, ug, and ε, respectively. 

The significance of the components of variance was verified using the likelihood ratio 

(LR) tests:   

LR = -2 * [log LReduced - log LFull] ~ χ
 fFull - fReduced

 2  
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where: log LReduced is the log of the reduced model likelihood (without a given random 

effect); log LFull is the log of the full model likelihood; χ
 fFull - fReduced

 2 is a Chi-squared (χ2) 

distribution with fFull - fReduced degrees of freedom, in which fFull and fReduced are the number of 

parameters in the full and reduced models, respectively.  

In addition, the estimates of heritability were obtained using the methodology proposed 

by Cullis et al. (2006): 

H2 = 1 - 
vBLUP

2σug
2

 

where vBLUP is the mean-variance of a difference between two BLUPs (Best Linear 

Unbiased Prediction); σug

2  is the component of variance of the genotypes. 

In a second moment, the genotype effect was taken as fixed, and a joint analysis, 

considering the six environments was performed. For this purpose, the following model was 

used: 

Y = Xβ + Zbub + Zaua + Zgauga + ε 

where Y is the vector of the phenotypic data; β is the vector of fixed effects of the 

genotypes, and the replicates nested within the environments; X is the incidence matrix 

associated with the fixed effects; ub is the vector of the random effect of the blocks nested 

within the replicates nested within the environments, with ub ~ N (0, Ibσ
ub

2 ); ua is the vector of 

random effect of the environments, with ua ~ N (0, Iaσ
ua

2 ); uga is the vector of random effect of 

the genotypes x environments interaction, with uga ~ N (0, Igaσ
uga

2 ); Zb, Za, and Zga are the 

incidence matrix associated with the vectors ub, ua, and uga, respectively; and ε is the vector of 

residuals, with ε ~ N (0, Iε σε 

2 ); σub

2 , σua

2 , σuga

2 , and σε
2 are the components of variance of the 

blocks nested within the replicates nested within the environments, environments, genotypes x 
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environments interaction, and residuals, respectively, while Ib, Ia, Iga, and Iε are the identity 

matrices associated with ub, ua, uga, and ε, respectively. 

The grain yield stability indices were estimated using the GxE matrix. These indices 

were used for genomic predictions.  

Stability indices 

 Wricke’s ecovalence index (Wi
2) were obtained from the adjusted phenotypic means. 

This methodology aims to determine the contribution of each genotype to the GxE interaction, 

in which the more stable genotypes are those whose present the smaller contribution to the 

genotypes by environments interaction. The Wi
2 estimates were obtained from the following 

estimator (Ramalho et al., 2012): 

Wi
2 = ∑(Y̅ij - Y̅i• - Y̅•j - Y̅••)

2
=  ∑ gê

ij

2

k

j=1

k

j=1

 

where: Y̅ij is the mean of the ith maize hybrid in the jth environment; Y̅i• e Y̅•j  represents 

the overall means of the ith maize hybrid and the jth environment, respectively; and Y̅•• is the 

overall mean. 

In addition, a principal component analysis (PCA) was performed to simplify the total 

observed GxE variation, in just a few explanatory principal components. The Euclidian 

distances (ED) of each maize hybrid were calculated using their scores. The ED was calculated 

using the norm of the score vectors of each maize hybrid:  

EDi = √∑ PCki
2

n

k=1
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where: EDi is the Euclidian distance of the ith maize hybrid; PCki is the score of the 

principal component k for the ith maize hybrid, being k = 1, e n = min (row, column) 

correspondent to the rank of the GxE matrix. 

The observed ED of each hybrid was used as an alternative stability index, in which the 

smaller hybrid’s ED, the greater its stability.   

The indices proposed by Resende (2002; 2004) were also used. These indices consider 

not only the GxE matrix but also the main effect of the genotypes (G). Therefore, the indices 

of the MHVG (harmonic mean of the breeding values), PRVG (relative performance of the 

breeding values), and MHPRVG (harmonic mean of the relative performance of the breeding 

values) were adopted. The MHVG, PRVG, and MHPRVG estimates were obtained by: 

MHVG𝑖 =  
𝑛

∑ 𝑉𝑔𝑖𝑗
𝑛
𝑗=1

 ; PRVG𝑖 =  
∑

𝑉𝑔𝑖𝑗

𝑙𝑗

𝑛
𝑗=1

𝑛
 ;  MHPRVG𝑖 =  

𝑛

∑
𝑉𝑔𝑖𝑗

𝑙𝑖

𝑛
𝑗=1

 

where: 𝑛 is the number of environments where the ith maize hybrid was evaluated; 𝑉𝑔𝑖𝑗 

is the breeding value of the ith maize hybrid in the jth environment; and 𝑙𝑗 is the overall mean 

of the jth environment. 

In addition, the indices proposed by Finlay and Wilkinson (1963) were also estimated. 

The Finlay-Wilkinson model consists of a regression on the environmental mean, as follows:  

y̅
ij
 = μ + Gi + β

i
Ej + ε̅ij 

where y̅
ij
 is the mean of the ith maize hybrid in the jth environment; μ is the overall 

mean, Gi is the main effect of the ith maize hybrid, given by the average grain yield of the ith 

maize hybrid across environments; β
i
 is the slope of the ith maize hybrid; Ej is the main effect 

of the jth environment, given by the average grain yield of the jth environment across the maize 

hybrids; ε̅ij is the residual associated to y̅
ij
. 
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According to the Finlay-Wilkinson methodology, the stable genotypes present lower 

residual variance (Var E), while the intercept (μ
i
 = μ + Gi) and slope (β

i
) of each genotype 

indicate its general adaptation (G. Adaptation) and adaptability, respectively. 

The estimates of the stability indices and the BLUEs of each hybrid were used for the 

training of the genomic prediction models, aiming to predict the grain yield stability of the 

maize hybrids under study.  

Genomic prediction model 

The genomic predictions of the stability indices were performed via the R environment 

(R Core Team, 2021) using the BGLR package (Perez and De Los Campos, 2014). The 

Bayesian Ridge Regression (BRR) model was chosen, which assumes a Gaussian distribution 

with µ = 0 and σβ
2 ~ 𝑋−2 as a prior of the model. Further details of the BRR model can be found 

in Perez and De Los Campos (2014).  

The predictive abilities were measured using 10-fold cross-validation (cv) scheme. For 

each strategy, ten rounds of 10-fold cv were performed. For each round, the predictive ability 

of the model was calculated by the Pearson correlation of predicted and observed values in the 

testing populations.  

The heritability (h2) and predictive accuracy (ACC) were estimated using the estimators 

proposed by Gezan et al. (2017):  

ACC =
Corr (y

obs
, â)

√h
2
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where: corr (y
obs

, â) is the Pearson correlation of predicted and observed values; ℎ2 is 

the heritability of the trait under study, being h
2
= 1 - 

σe
2

σy
2, in which σe

2 e σy
2 correspond to residual 

and phenotypic components of variance, respectively. 

In addition, Bayesian Multi-environment (BME) genomic prediction methodology, 

presented in Montesinos-López et al. (2019b), was also performed to compare to indices 

prediction results. The BME analyzes were performed using the BME function from BMTME 

R-package (Luna-Vazquez et al., 2020). Once again, the BRR model was chosen and 10-fold 

cv was applied.  

All genomic prediction analyzes were performed considering a total of 30,000 iterations 

and burn-in of the first 20,000 iterations. The prediction analyses were performed using an Intel 

Core i5 2.20GHz processor and 8.00 GB of RAM.  

Results 

The components of genetic variance were significant in all environments, except E4: 

Sorriso – MT (Table 2). The non-significance of genetic variance in this environment can be 

explained by the high CVe (38.57%) and the low magnitude of the heritability (0.12) of the 

grain yield trait. The other environments presented acceptable CVe (27.88% to 35.62%) and 

heritability (0.36 to 0.52) estimates for a complex trait such as grain yield.  

Table 2. Summary of the individual analysis of variance of the 128 maize hybrids evaluated 

across six environments during the safrinha of the 2012/2013 crop season. 

Parameters 
Environments 

E1 E2 E3 E4 E5 E6 

σ𝐺
2  0.90** 0.42** 1.02** 0.24ns 0.42** 0.66** 

σ𝑒
2  3.49 2.04 1.84 4.84 1.67 3.43 

H2 Cullis 0.43 0.37 0.52 0.12 0.41 0.36 

CVe (%) 27.88 32.38 28.03 38.57 30.12 35.62 
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σ𝐺
2 : genetic variance; σe

2: residual variance; H2: heritability; CVe: coefficient of variation 

Using the GxE matrix, obtained through joint analysis, it was performed an interaction 

plot considering the six environments (Figure 1). The GxE interaction was quite present. 

Preliminarily, it was observed that Riverlândia, Chapadão do Céu, and Rio Verde were the 

unfavorable environments for most evaluated maize hybrids.  

 

Figure 1. Genotype x Environment interaction plot. 

The W2 estimates of each of the 128 hybrids were plotted in Figure 2. As expected, a 

large variation, in terms of grain yield stability, was observed. Considering the median of W2 

estimates as a reference (red line), it is possible to identify the most stable (below the reference 

line) and less stable (above the reference line) genotypes (Figure 2). 
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Figure 2. Estimates of Wricke’s ecovalence (W2) index for each of the 128 evaluated maize 

hybrids. 

Aiming to simplify the study of GxE, the dataset was submitted to Principal Component 

Analysis (PCA). The first four principal components explained 84.69% of the total variation 

presented in the dataset (Table 3).  

Table 3. Magnitudes of singular values, percentage of contribution (%), and cumulative 

contribution of the singular values, obtained through Principal Component Analysis. 

   Singular values (%) Cumulative (%) 

λ1 0.097948 28.86 28.86 

λ2 0.078457 23.12 51.98 

λ3 0.064027 18.87 70.85 

λ4 0.046960 13.84 84.69 

λ5 0.029811 8.78 93.47 

λ6 0.022190 6.53 100 

 

Although PC1 and PC2, explain, respectively, 28.86% and 23.12% of the observed 

variation, the scores of these components were plotted on the X and Y axes of a biplot, to 

simplify the interpretation of the results (Figure 3). The maize hybrids near the center of the 

biplot are classified as more stable than those that are far from the center of the biplot. 
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Figure 3. Biplot representation of principal components 1 and 2. 

For the final estimates of the Euclidian distance of each hybrid, the norms of the vectors 

were calculated considering the scores of the first four principal components. The Euclidian 

distances of each hybrid are plotted in Figure 4.  

The results were quite similar to Wricke’s ecovalence. Again, considering the median 

as a reference, those genotypes that were below the red line are identified as more stable.  
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Figure 4. Estimates of the Euclidian distance, considering the first four principal components 

of the 128 evaluated maize hybrids.  

Considering the 128 hybrids, the BRR model was applied to estimate the phenotypic 

and genotypic parameters. The component of phenotypic variance ranged from 0.002 to 0.257, 

for Var E and MHVG indices, respectively. The component of residual variance fluctuated from 

0.002 (Var E) to 0.198 (MHVG) (Table 4).  

Table 4. Phenotypic and genotypic parameters associated with the several indices considering 

the 128 evaluated maize hybrids. 

Index 
Parameter 

σ𝐹
2  σe

2 H2 Corr. Interval 

Wricke’s ecovalence (W2) 0.045 0.037 0.18 0.63 0.51 – 0.72 

Euclidian Distance (ED PC4) 0.036 0.029 0.19 0.65 0.54 – 0.74 

The main effect of genotype (G) 0.186 0.141 0.25 0.69 0.59 – 0.77 

Resendes’ MHVG 0.257 0.198 0.23 0.67 0.56 – 0.76 

Resendes’ PRVG 0.010 0.007 0.25 0.69 0.59 – 0.77 

Resendes’ MHPRVG 0.010 0.007 0.25 0.69 0.59 – 0.77 

F&W’s Var E 0.002 0.002 0.12 0.60 0.48 – 0.70 

F&W’s Adaptability  0.013 0.011 0.14 0.65 0.53 – 0.74 

F&W’s General Adaptation 0.245 0.188 0.24 0.68 0.57 – 0.76 

σ𝐹
2 : phenotypic variance; σe

2: residual variance; H2: heritability; Corr: The Pearson correlation 

between observed and predicted values; Interval: Interval of the Pearson correlation. 
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The heritability estimates were low, with a peak of 0.25. In general, the heritability 

estimates of the stability indices (W2, ED, and Var E) were the lowest, ranging from 0.12 to 

0.19, for Var E and W2, respectively. The Pearson correlations, considering the whole dataset 

were used as references for the cross-validation inferences (Table 4).    

The results of the 10 rounds of 10-fold cross-validation were plotted in figure 5. The 

result of each cross-validation round and its average can be found in the supplementary material 

(Table 1 SM). Considering the references heritability and Pearson correlation presented in table 

4, it is possible to consider that most of the indices presented a low to medium performance.  In 

general, the predictive ability (PA) of the chosen indices fluctuated from 0.17 to 0.31, except 

for Var E and Adaptability indices, which presented poor performance. 

 

Figure 5. Boxplot representation of the predictive ability and accuracy of the indices, after 10 

rounds of 10-fold cross-validation predictions.  

Although the predictive accuracy (ACC) presented a similar pattern to PA, the estimates 

of ACC were higher, fluctuating between 0.33 and 0.61, except for Adaptability, in which the 

ACC was almost null. 

To better understand the relationship among the nine indices, a correlation plot between 

the estimates of the indices is presented in figure 6. It was possible to cluster the nine indices 
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into three groups: Group 1: G, MHVG, PRVG, MHPRVG, G. Adaptation; Group 2: W2, ED 

(PC4), Var E.; Group 3: Adaptability. 

 

Figure 6. Correlation plot among the indices.  

To make additional comparisons, genomic predictions were performed considering the 

Bayesian Multi-Environment model (BME). The predictive abilities when considering both 

effects: G + GxE were greater than GxE only (Table 5). In general, the predictive abilities 

achieved by using the BME were outperformed by indices predictions using the BRR model. 

On average, indices models outperformed BME by about 3.16%, 15.79%, 33.16%, 40.53%, 

38.95%, 37.37%, and 38.95% while predicting W², ED (PC4), G, MHVG, PRVG, MHPRVG, 

G. Adaptation, respectively. However, Var E. and Adaptability indices’ predictive abilities 

were about 50% and 115% lower than BME’s average.  
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Table 5. Results of the Bayesian Multi-Environment model (BME) considering the main effect 

of genotypes plus GxE interaction (G + GxE), and the GxE interaction only (GxE). 

Environment G + GxE GxE 

E1 – Paraúna/GO 0.19 -0.01 

E2 – Riverlândia/GO 0.23 0.07 

E3 – Chapadão do Céu/GO 0.21 0.07 

E4 – Sorriso/MT 0.11 -0.17 

E5 – Rio Verde/GO 0.21 0.11 

E6 – Campo Novo do Parecis/MT  0.20 0.04 

Average 0.19 0.02 

 

Discussion 

The significances of the components of genetic variance indicate the presence of genetic 

variability among the maize hybrids. This variability is expected due to the diverse backgrounds 

of the parental lines, as reported by Cantelmo et al. (2017a, 2017b).  

The low estimates of heritability are mainly explained by the complexity of grain yield 

traits. Pereira et al. (2022) reported similar results when evaluating maize hybrids in summer 

season and safrinha conditions. In addition, safrinha maize faces more intense environmental 

challenges, which contributes to the lower estimates of heritability and higher CVe. 

The GxE interaction was quite severe, as noted in the interaction plot (Figure 1). Such 

a scenario represents a complicator factor for genotypes selection and recommendation. In cases 

of significant GxE, three strategies might be applied: i) to ignore; ii) capitalize, or iii) minimize 

the GxE. 

Although exploiting GxE seems interesting, too specific genotype recommendations can 

excessively inflate the hybrids portfolio, which might increase seeds production costs, due to 

the necessity of maintaining a large portfolio; therefore, the identification of high stable 

genotypes, that minimizes the GxE, is a widely adopted strategy.   
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Over the years, several methodologies were developed to study genotypes’ stability. In 

this work, four well-consolidated methodologies were used: Ecovalence (Shojaei et al., 2021), 

Euclidian Distance (Annicchiarico, 1997; Oliveira et al., 2014; Yamamoto et al., 2021), 

Resende’s indices (Mendes et al., 2012; Oliveira et al., 2017; Yamamoto et al., 2021), Finlay-

Wilkinson (Malosetti; Ribaut; Eeuwijik, 2013; Eeuwijk; Bustos-Korts; Malosetti, 2016; Lozada 

and Carter, 2020).  

Figures 2 and 4, in addition to table 4, indicate that both Ecovalence (W2) and Euclidian 

Distances (ED) indices achieved similar results. Although some variation for both indices was 

observed in this dataset, the principal component analysis was not very effective. In comparison 

to W2, the PCA reduced from 6 to 4 main components, and just increased the heritability from 

0.18 to 0.19, and the Pearson correlation from 0.63 to 0.65. In other words, the PCA reduces 

the dataset noise but increases the heritability and the predictive ability by only 5% and 3%, 

respectively, however, the ED could outperform W2 in a larger dataset.  

Due to the complexity of working only with the GxE matrix, additional indices, that also 

consider the genetic merit of the maize hybrids per se, were used. In such a scenario, Resende’s 

indices were chosen. Since the harmonic mean penalizes large deviations, the harmonic mean 

of the breeding values (MHVG) can be used as an index of the genotype’s stability, while the 

relative performance of the breeding values (PRVG) indicates the genotype’s adaptability. 

Therefore, the harmonic mean of the relative performance of the breeding values represents 

both genotype’s stability and adaptability in a single index: the MHPRVG.  

Considering Resende’s methodology, the results of MHVG, PRVG, and MHPRVG 

were similar to those achieved by using the main effect of genotypes (G). There are several 

reports on the benefits of Resende’s indices in the literature (Resende, 2002, 2004; Oliveira et 

al., 2017, Mendes et al., 2012). Although predicting G could be considered an easier strategy 
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in this case, the focus of this work is to predict the stability, and in large datasets (in terms of 

genotypes and environments), the MHVG and MHPRVG indices should be a more adequate 

approach. Indeed, after 10 rounds of 10-fold cross-validation, MHVG, PRVG, and MHPRVG 

outperformed G by about 5.53%, 4.35%, and 3.16%, respectively.  

The results of predicting Finlay-Wilkinson’s indices were more diversified. While the 

general adaptation index approximated to the G results, Var E and adaptability indices were 

unique, being the worst in terms of heritability: 0.12 (Var E) and 0.14 (Adaptability), and 

predictive ability 0.10 (Var E) and -0.03 (Adaptability), on average, respectively. However, 

Lozada and Carter (2020) achieved good predictive ability (0.46 to 0.66) while predicting 

Finlay-Wilkinson regression coefficients in agronomic traits of 456 winter wheat lines. In our 

work, a relatively small dataset was used (only 128 maize hybrids), which might contribute to 

the low predictive ability of Var E and Adaptability indices.  

The estimates of predictive accuracy were lower than those presented in Gezan et al. 

(2017), in which the BRR model was applied to predict different traits in strawberries. The 

same authors suggest that predictive ability and accuracies might increase as the training 

population size increases. In addition, Sánchez and Akdemir (2021) highlight that the larger 

training population sets the better prediction, and the genetic relationship between training and 

the testing population is required to obtain high accuracies.  

Clustering the indices into the three groups was efficient to better visualize the indices 

relationship, and to optimize the genotypes stability prediction approach by reducing the 

number of indices to be predicted or estimated. In this dataset, all indices that consider the 

performance of the hybrid per se could be summarized by predicting G. However, as 

highlighted by Resende (2004), the MHPRVG index accounts for both genotype’s stability and 

adaptability, then, the MHPRVG could outperform G in other scenarios, such as larger datasets. 
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Therefore, the MHPRVG index could be prioritized in future works involving the whole 

dataset: 2770 maize hybrids evaluated in 50 locations in Brazil (Pereira et al., 2022).   

Although there are no alternative indices for adaptability, the Var E. index might be 

replaced by predicting W2 or ED (PC4) indices, which presented more satisfactory prediction 

abilities. The W2 and ED present similar performances considering the stability indices (group 

2). However, in larger datasets PCA followed by ED could surpass Wricke’s methodology. In 

addition, considering our dataset, the Adaptability index (group 3) should be disregarded due 

to its poor and non-consistent performance. 

Finally, one main question remains: Which strategy should be applied? i) to predict the 

genotype's stability index directly, or ii) a two-step approach (GxE predictions followed by 

stability index estimation)? 

To answer this question, a Bayesian Multi-Environment (BME) prediction approach 

was applied. Once again, working only with the GxE matrix is challenging, and the results were 

far from acceptable. However, predictive abilities greatly increased when working with 

G+GxE.  

Seven out of the nine indices outperformed the BME predictions, which indicates that 

indices' direct prediction might be more efficient than a two-step approach.  

It is important to highlight that the computational cost of performing BME was up to 

five hours, considering 128 maize hybrids, six environments, and 10-fold cross-validation. On 

the other hand, for each index, the predictions took less than 30 min for each cross-validation 

round.  

Conclusion 
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Among the indices, Wricke’s ecovalence (W2), and the main effect of genotypes (G) 

were enough to predict maize genotypes’ stability and agronomic performance, respectively. 

However, in larger datasets, the Euclidian Distance (ED) and the MHPRVG indices should be 

more adequate.  

The prediction abilities of the W2 and ED indices were computationally efficient and 

outperformed the results of the Bayesian Multi-Environment (BME) model. 

Although additional studies, using a larger and unbalanced dataset are required, the 

results demonstrated that predicting the stability index directly could be a simpler and more 

efficient strategy than a two-step approach: performing GxE genomic predictions followed by 

the estimation of the stability indices.  

References 

Acosta-Pech R, Crossa J, de los Campos G, Teyssèdre S, Claustres B, Pérez-Elizalde S. Pérez-

Rodríguez, P (2017) Genomic models with genotype x environment interaction for 

predicting hybrid performance: an application in maize hybrids. Theoretical and Applied 

Genetics, 130(7): 1431-1440. 10.1007/s00122-017-2898-0 

Andrea MCdaS, Boote KJ, Sentelhas PC, Romanelli TL (2018) Variability and limitations of 

maize production in Brazil: Potential yield, water-limited yield and yield gaps. Agricultural 

Systems, 165: 264-273. 10.1016/j.agsy.2018.07.004 

Annicchiarico P (1992) Cultivar adaptation and recommendation from alfalfa trials in Northern 

Italy. Journal of Genetics and Breeding, 46: 269-269. 

Annicchiarico P (1997) Joint regression vs AMMI analysis of genotype-environment 

interactions for cereals in Italy. Euphytica, 94: 53-62. 

https://doi.org/10.1023/A:1002954824178 



35 

 

Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding 

values when modeling genotype x environment interaction using pedigree and dense 

molecular markers. Crop Science, 55: 707-719. 10.2135/cropsci2011.06.0299   

Cantelmo NF, Von Pinho RG, Balestre M (2017a) Genomic analysis of maize lines introduced 

in the early stages of a breeding programme. Plant Breeding, 136(6): 845–860. 

10.1111/pbr.12543 

Cantelmo NF, Von Pinho RG, Balestre M (2017b) Genome-wide prediction for maize single-

cross hybrids using the GBLUP model and validation in different crop seasons. Molecular 

Breeding, 37: 1–13. 10.1007/s11032-017-0651-7 

Cullis BR, Smith AB, Coombes NE (2006) On the design of 

early generation variety trials with correlated data. Journal of 

Agricultural, Biological, and Environmental Statistics, 11: 381- 

393. https://doi.org/10.1198/108571106x154443 

Dias KOG, Gezan SA, Guimarães CT, Parentoni SN, Guimarães PEDO, Carneiro NP, Portugal 

EAB, Cardoso MJ, Anoni CO, Magalhães JV, Souza JC, Guimarães LJM, Pastina MM 

(2018) Estimating genotype × environment interaction for and genetic correlations among 

drought tolerance traits in maize via factor analytic multiplicative mixed models. Crop 

Science, 58(1): 72-83. 10.2135/cropsci2016.07.0566 

Dos Santos JPR, Fernandes SB, McCoy S, Lozano R, Brown PJ, Leakey ADB, Buckler ES, 

Garcia AAF, Gore MA (2020) Novel Bayesian networks for genomic prediction of 

developmental traits in biomass sorghum. G3 Genes| Genomes| Genetics, 10: 769-781. 

https://doi.org/10.1534/g3.119.400759 

Eberhart SA, Russel WA (1966) Stability parameters for comparing varieties. Crop Science, 

6(1): 36-40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x 

https://doi.org/10.2135/cropsci1966.0011183X000600010011x


36 

 

Eeuwijk FA, Bustos-Korts DV, Malosetti M (2016) What should students in plant breeding 

know about the statistical aspects of genotype x environment interactions? Crop Science, 

56: 2119-2140. 10.2135/cropsci2015.06.0375 

Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package 

rrBLUP. Plant Genome, 4: 250-255. https://doi.org/10.3835/plantgenome2011.08.0024 

Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant-breeding programme. 

Australian Journal of Agricultural Research, 14(6): 742-754. 10.1071/AR9630742 

Gezan SA, Osorio LF, Verma S, Whitaker VM (2017) An experimental validation of genomic 

selection in octoploid strawberry. Horticulture Research, 4(16070): 1-9. 

https://doi.org/10.1038/hortres.2016.70 

Gollob HF (1968) A statistical model which combines features of factor analytic and analysis 

of variance techniques. Psychometrika, 33: 73–115. 10.1007/BF02289676 

Hamazaki K, Iwata H (2022) Bayesian optimization of multivariate genomic prediction models 

based on secondary traits for improved accuracy grains and phenotyping costs. Theoretical 

and Applied Genetics, 135: 35-50. https://doi.org/10.1007/s00122-021-03949-1 

Jarquin D, de Leon N, Romay C, Bohn M, Buckler ES, Ciampittis I, Edwards J, Ertle D, Flint-

Garcia S, Gore MA, Graham C, Hirsch CN, Holland JB, Hooker D, Kaeppler SM, Knoll J, 

Lee EC, Lawrence-Dill CJ, Lynch JP, Moose SP, Murray SC, Nelson R, Rocheford T, 

Schnable JC, Schnable PS, Smith M, Springer N, Thomison P, Tuinstra M, Wisser RJ, Xu 

W, Yu J, Lorenzi A (2021) Utility of climatic information via combining ability models to 

improve genomic prediction for yield within the genomes to fields maize project. Frontiers 

in Genetics, 11: 1-11. 10.3389/fgene.2020.592769 

Lozada DN, Carter AH (2020) Insights into the genetic architecture of phenotypic stability traits 

in winter wheat. Agronomy, 10(368): 1-15. 10.3390/agronomy10030368   

https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.1007/bf02289676
https://doi.org/10.1007/s00122-021-03949-1


37 

 

Luna-Vázquez FJ, Toledo FH, Montesinos-López O, Montesinos-López A, Crossa J (2020) 

BMTME: Bayesian multi-trait multi-environment for genomic selection analysis. 

Malosetti M, Ribaut J-M, Eeuwijk FA (2013) The statistical analysis of multi-environment 

data: modeling genotype-by-environment interaction and its genetic basis. Frontiers in 

physiology, 4(44): 1-17. 10.3389/fphys.2013.00044 

Mandel J (1969) The partitioning of interactions in analysis of variance. Journal of Research of 

the National Bureau of Standards, 73: 309-328. 10.6028/JRES.073B.031 

Mandel J (1971) A new analysis of variance model for non-additive data. Technometrics, 13(1): 

1-18. https://doi.org/10.2307/1267072 

Mendes FF, Guimarães LJM, Souza JC, Guimarães PEO, Pacheco CAP, Machado JRdeA, 

Meirelles WF, Silva AR, Parentoni SN (2012) Adaptability and stability of maize varieties 

using mixed model methodology. Crop Breeding and Applied Biotechnology, 12: 111-117. 

https://doi.org/10.1590/S1984-70332012000200003 

Montesinos-López O, Montesinos-López A, Crossa J, Cuevas J, Montesinos-López JC, 

Gutiérrez ZS, Lillemo M, Philomin J, Singh R (2019a) A Bayesian genomic multi-output 

regressor stacking model for predicting multi-trait multi-environment plant breeding data. 

G3 Genes| Genomes| Genetics, 9(3381): 1-13.  

Montesinos-López O, Montesinos-López A, Luna-Vázquez FJ, Toledo FH, Pérez-Rodríguez P, 

Lillemo M, Crossa J (2019b) An R package for Bayesian analysis of multi-environment and 

multi-trait multi-environment data for genome-based prediction. G3 Genes| Genomes| 

Genetics, 9(5): 1355-1369. 10.1534/g3.119.400126 

Oliveira RL de, Von Pinho RG, Ferreira DF, Pires LPM, Melo WMC (2014) Selection index 

in the study of adaptability and stability in maize. The Scientific World Journal, 

2014(360570): 1-6. http://dx.doi.org/10.1155/2014/360570 

https://doi.org/10.6028/JRES.073B.031
https://doi.org/10.2307/1267072
https://doi.org/10.1590/S1984-70332012000200003


38 

 

Oliveira IJde, Atroch AL, Dias MC, Guimarães LJ, Guimarães PEdeO (2017). Selection of corn 

cultivars for yield, stability and adaptability in the state of Amazonas, Brazil. Pesquisa 

Agropecuária Brasileira, 52(6): 455-463. 10.1590/S0100-204X2017000600009 

Pereira F de C, Ramalho MAP, Resende Junior MFR de, Von Pinho RG (2022) Mega-

environment analysis of maize breeding data from Brazil. Scientia Agricola, 79(2): 1-10. 

http://doi.org/10.1590/1678-992X-2020-0314 

Pérez P, de los Campos G (2014) Genome-Wide Regression and Prediction with the BGLR 

Statistical Package. Genetics, 198(2): 483-1495. 10.1534/genetics.114.164442 

R Development Core Team (2021) R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. 

Ramalho MAP, Abreu FFB, Santos JB dos, Nunes JAR (2012) Aplicações da genética 

quantitativa no melhoramento de plantas autógamas. Lavras: Ed. UFLA. 522 p. 

Resende MDV (2002) Genética biométrica e estatística no melhoramento de plantas perenes. 

Brasília: Embrapa Informação Tecnológica; Colombo: Embrapa Florestas. 975p. 

Resende MDV (2004) Métodos Estatísticos Ótimos na Análise de Experimentos de Campo. 

Embrapa Florestas. Colombo. 65 p. (Documentos 100). 

Sánchez JI y, Akdemir D (2021) Training set optimization for sparse phenotyping in genomic 

selection: a conceptual overview. Frontiers in Plant Science, 12: 1-14. 

10.3389/fpls.2021.715910 

Shojaei SH, Mostafavi K, Lak A, Omrani A, Omrani S, Mousavi SMN, Illés A, Bojtor C, Nagy 

J (2021) Evaluation of stability in maize hybrids using univariate parametric methods. 

Journal of Crop Science and Biotechnology, 1-8. https://doi.org/10.1007/s12892-021-

00129-x 

https://dx.doi.org/10.1534%2Fgenetics.114.164442


39 

 

Silveira LS, Martins Filho S, Azevedo CF, Barbosa EC, Resende MDV, Takahashi EK (2019) 

Bayesian models applied to genomic selection for categorical traits. Genetics and Molecular 

Research, 18(4): 1-10. http://dx.doi.org/10.4238/gmr18490 

VanRaden PM (2008) Efficient methods to compute genomic predictions. Journal of dairy 

science, 91(11): 4414-4423.10.3168/jds.2007-0980 

Volpato L, Bernardeli A, Gomez F (2021) Genomic selection with rapid cycling: Current 

insights and future prospects. Crop Breeding and Applied Biotechnology, 21: 1-8. 

http://dx.doi.org/10.1590/1984-70332021v21Sa27 

Von Pinho RG, Silva EVV, Oliveira TL (2022) Challenges of maize breeding under tropical 

conditions of Brazil. Revista Brasileira de Milho e Sorgo, 21(e1258): 1-25. 

https://doi.org/10.18512/rbms2022vol21e1258 

Wang T, Chen Y-PP, Goddard ME, Meuwissen THE, Kemper KE, Hayes BJ (2015) A 

computationally efficient algorithm for genomic prediction using a Bayesian model. 

Genetics Selection Evolution, 47(34): 1-16. 10.1186/s12711-014-0082-4 

Wang T, Chen Y-PP, MacLeod IM, Pryce JE, Goddard ME, Hayes BJ (2017) Application of a 

Bayesian non-linear model hybrid scheme to sequence data for genomic prediction and QTL 

mapping. BMC Genomics, 18(618): 1-23. 10.1186/s12864-017-4030-x 

Wang N, Wang H, Zhang A, Liu Y, Yu D, Hao Z, IIut D, Glaubitz JC, Gao Y, Jones E, Olsen 

M, Li X, Vicente FS, Prasanna BM, Crossa J, Pérez-Rodríguez P, Zhang X (2020) Genomic 

prediction across years in a maize double haploid breeding program to accelerate early-

stage testcross testing. Theoretical and Applied Genetics, 133: 2869-2879. 

https://doi.org/10.1007/s00122-020-03638-5 

Wricke G (1965) Zur berechnung der okovalenz bei sommerweizen und hafer. Z. 

Pflanzenzuchtg, 52: 127-138. 

https://doi.org/10.3168/jds.2007-0980


40 

 

Yamamoto ELM, Gonçalves MC, Davide LMC, Santos A dos, Candido LS (2021) Adaptability 

and stability of maize genotypes in growing regions of central Brazil. Revista Ceres, 68(3): 

201-211. 10.1590/0034-737X202168030006 

Yan W, Hunt LA, Sheng Q, Szlavnics Z (2000) Cultivar evaluation and megaenvironment 

investigation based on GGE biplot. Crop Science, 40(3): 597-605. 

https://doi.org/10.2135/cropsci2000.403597x 

 

 

 

 

 

  

https://doi.org/10.2135/cropsci2000.403597x


41 

 

Supplementary material 

Table 1 SM. Results of the ten rounds of 10-fold cross-validation of indices genomic 

predictions using the BRR model. 

 W2 ED G MHVG PRVG MHPRVG VAR E ADAP G. ADAP 

 Round 1 

Corr.  0.23 0.25 0.28 0.29 0.28 0.28 0.13 0.00 0.29 

ACC  0.54 0.61 0.60 0.54 0.54 0.53 0.45 0.00 0.54 

 Round 2 

Corr. 0.19 0.19 0.25 0.25 0.26 0.24 0.10 0.03 0.27 

ACC  0.50 0.41 0.45 0.48 0.49 0.45 0.40 0.06 0.52 

 Round 3 

Corr. 0.20 0.21 0.21 0.30 0.30 0.30 0.11 -0.05 0.30 

ACC  0.54 0.49 0.39 0.56 0.58 0.59 0.33 -0.14 0.56 

 Round 4 

Corr. 0.17 0.18 0.22 0.26 0.26 0.26 0.10 0.04 0.25 

ACC  0.41 0.41 0.38 0.43 0.43 0.44 0.32 0.08 0.43 

 Round 5 

Corr. 0.20 0.24 0.31 0.28 0.28 0.28 0.11 -0.17 0.29 

ACC  0.45 0.53 0.60 0.48 0.47 0.48 0.26 -0.48 0.51 

 Round 6 

Corr. 0.20 0.24 0.28 0.29 0.29 0.29 0.10 -0.16 0.28 
ACC  0.50 0.57 0.54 0.49 0.51 0.50 0.23 -0.48 0.47 

 Round 7 

Corr. 0.20 0.23 0.25 0.24 0.24 0.24 0.08 0.00 0.23 

ACC  0.46 0.49 0.50 0.53 0.52 0.53 0.18 0.00 0.54 

 Round 8 

Corr. 0.19 0.20 0.25 0.29 0.28 0.28 0.01 0.06 0.29 

ACC  0.49 0.51 0.48 0.53 0.52 0.52 0.03 0.13 0.52 

 Round 9 

Corr. 0.18 0.24 0.22 0.26 0.25 0.24 0.11 -0.05 0.25 
ACC  0.39 0.51 0.42 0.48 0.47 0.45 0.39 -0.16 0.47 

 Round 10 

Corr. 0.20 0.22 0.26 0.21 0.20 0.20 0.10 0.01 0.19 

ACC  0.33 0.42 0.48 0.35 0.34 0.33 0.34 0.04 0.38 

 Average 

Corr. 0.20 0.22 0.25 0.27 0.26 0.26 0.10 -0.03 0.26 
ACC  0.46 0.50 0.48 0.49 0.49 0.48 0.33 -0.10 0.49 

Bold values indicate significance 
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Genomic prediction for maize grain yield stability under multi-environment scenarios 

Eric Vinicius Vieira Silva 

Abstract – The genotype by environment interaction (GxE) plays an important role in maize 

breeding, and its effects are even more complex considering the second season in Brazil, 

therefore, selecting highly stable hybrids is crucial to overcome the challenges of tropical 

agriculture. Genomic prediction (GP) has become an important tool for plant breeding, and it 

was gradually integrated into many breeding pipelines. Reports highlight that GP accuracies 

can be improved by modeling the GxE in a multi-environment (ME) approach. The objective 

of this work was to study different genomic prediction strategies considering maize yield 

stability and multi-environment scenarios. 1180 hybrids were evaluated for grain yield in 12 

environments during the second season of the 2012/2013 and 2013/2014 crop years, however, 

both crop years were used separately. Bayesian Ridge Regression genomic predictions were 

performed considering: i) single-environment (SE) predictions; ii) stability index predictions; 

iii) ME prediction without including GxE, and iv) including GxE effects. Two cross-validations 

were used: CV1 (10-fold), and CV2 (whole environment predictions, ME only). On average, 

the predictive ability (PA) for SE was 0.25. For the Euclidian Distance index, the PAs were -

0.079 (2012/2013) and 0.16 (2013/2014), while the MHPRVG index achieved 0.53 

(2012/2013) and 0.51 (2013/2014) of predictive abilities. Considering CV1, no gain was 

observed by including the GxE in the 2012/2013 ME approach (PA 0.56), for 2013/2014 

marginal gain was observed (from 0.75 to 0.76). CV2 present very poor predictability. 

Predicting the MHPRVG might be efficient. The inclusion of GxE did not justify its higher 

computational cost. Additional studies using better-designed datasets are required. 

Keywords: Zea mays; Genotypes x environments interaction; multi-environment genomic 

prediction; Stability index. 



44 

 

Introduction  

Brazil’s tropical condition is very challenging in terms of biotic and abiotic stress. It is 

well-known that second season (or safrinha) maize often faces drought conditions and higher 

insect pressures, resulting in yield losses (Andrea et al., 2018). The genotype by environment 

interaction (GxE) plays a crucial role in maize breeding, and due to the low predictability over 

the environments and crop years, the GxE is even more complex considering second season 

maize (Von Pinho; Silva; Oliveira, 2022).   

Since its first proposal (Meuwissen et al., 2001), genomic prediction (GP) methods have 

become an important tool in plant breeding pipelines. The use of GP does not only shorten the 

time required to complete a breeding cycle (Heslot et al., 2014) but also allows to increase the 

number of genotypes under studies without significantly increasing phenotyping costs, in other 

words, GP tools support the breeder with useful information regarding the populations or 

hybrids that should be synthetized and tested. Indeed, Beyene et al. (2019) reported up to 32% 

of cost reductions by including genomic selection in tropical maize breeding pipeline without 

reducing the genetic gains.  

Due to its relevance, many researchers have studied different GP approaches, such as 

the inclusion of non-additive effects (Dias et al., 2018), the optimization of training populations 

(Atanda el al.,2021; Fristche-Neto et al., 2021), the GxE modeling (Burgueño et al., 2012; 

Acosta-Pech et al., 2017; Dias et al., 2018, Wang et al., 2020; Magento et al., 2020), the 

inclusion of environmental covariables (Gillberg et al., 2019; Costa-Neto et al., 2021b; Jarquín 

et al., 2021), deep learning (Montesinos-López et al., 2021).  However, none of them have tried 

to directly predict maize grain yield stability. 

Rezende et al. (2021) define stability as the genotype’s ability to have highly predictable 

behavior regardless of environmental changes. In other words, stable genotypes have a similar 
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performance across locations and over the years, which is a highly desirable characteristic 

considering maize hybrid development for second season environments (Von Pinho; Silva; 

Oliveira, 2022).   

To better study the GxE and the stability, multi-environmental trials (MET) are required. 

The METs represent a high cost in the breeding pipeline budget. Considering traditional least 

square methods (i.e., traditional analysis of variance), all the genotypes must be evaluated in all 

the environments, otherwise, the analysis may be affected. Such a scenario increases the 

phenotyping costs. In this sense, the mixed model approach is flexible, and better handling 

unbalanced trials, among other advantages (Eeuwijk; Bustos-Korts; Malosetti, 2016). In 

addition, the Bayesian approach can also be used for GxE studies, which is a more 

parsimonious, refined, informative, and powerful approach, allowing the incorporation of prior 

information (Montesinos-López et al., 2022).      

In this scenario, multi-environment GP is an efficient approach for genotypes selection 

as well as to better understand the GxE and the target environments. However, well-designed 

training/testing populations (Atanda el al.,2021; Fristche-Neto et al., 2021), in addition to well-

planned METs are essential to achieve good prediction accuracies (Jarquín et al., 2020). 

The objective of this work was to study different genomic prediction strategies 

considering maize grain yield stability and multi-environment scenarios.  

Materials and methods 

Phenotypic data 

A dataset of 1180 maize hybrids were evaluated for grain yield (t ha-1) in 12 different 

environments during the second season of the 2012/2013 and 2013/2014 crop years (Table 1). 
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The maize hybrids were evaluated under incomplete block designs, with a variable number of 

replicates, in 5-m-wide four rows spaced 0.5 m (between rows) plots.  

Table 1. Grain yield means and coefficient of variation of maize single-cross hybrids cultivated 

across 12 environments during the second season of the 2012/2013 and 2013/14 crop years. 

Env. Location Year GY mean (t ha-1) N. of genotypes  

E1 
Campo Novo do Parecis – 

MT 
2012/13 

5.08 
308 

E2 Chapadão do Céu – GO 2012/13 4.26 227 

E3 Paraúna – GO 2012/13 6.74 309 

E4 Rio Verde – GO 2012/13 4.14 294 

E5 Riverlândia – GO 2012/13 4.59 292 

E6 Sorriso – MT 2012/13 6.10 307 

E7 
Campo Novo do Parecis – 

MT 
2013/14 

5.60 
709 

E8 Lucas do Rio Verde – MT 2013/14 4.13 709 

E9 Primavera do Leste – MT 2013/14 6.71 709 

E10 Rio Verde – GO 2013/14 2.63 709 

E11 Sapezal – MT 2013/14 7.58 710 

E12 Sorriso – MT 2013/14 5.04 710 
Env.: Environment; GY: Grain Yield 

It is important to highlight that the dataset accounts for a lines-introgression maize 

program, and it was kindly provided by a private breeding company. Further information and 

genotypes’ characterization can be found in Cantelmo et al. (2017).  

Genotypic data 

23153 DArTs (Diversity Arrays Technology company) markers were generated for each 

parental line. The maize hybrids DArTs panel was constructed by the combination of the 

parental lines. The markers were filtered considering 5% of MAF (Minor Allele Frequency) 

and marker imputation was performed considering the markers’ mean. Markers with more than 

50% of missing data were removed. The genomic matrix was constructed using VanRaden’s 

method (VanRaden, 2008) presented in the AGHmatrix R-package (Amadeu et al., 2016). Only 

hybrids that possessed both phenotypic and genotypic data were considered.  
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Phenotypic data analysis 

The statistical analyses were performed in two stages. First: to adjust field sources of 

variation, single-environment analyses were performed, then second: multi-environmental 

analyses were performed to obtain genotype by environment matrix. In the first stage, the 

following model was used to obtain the BLUEs (Best Linear Unbiased Estimators) of each 

hybrid in each environment:  

Y = Xβ + Zbub + ε 

where Y is the vector of the phenotypic data; β is the vector of fixed effects of the 

genotypes and the replicates; X is the incidence matrix associated with the fixed of the genotype 

and the replicates; ub is the vector of the random effect of the blocks nested within the replicates, 

with ub ~ N (0, Iub
σ

ub

2 ); Zb is the incidence matrix associated with the vector ub; and ε is the 

vector of residuals, with ε ~ N (0, Iε σε 

2 ); σub

2 , and σε
2 are the components of variance of the 

blocks within replicates and the residuals, respectively, while Iub
, and Iε are the identity matrices 

associated with ub, and ε, respectively. 

In the second stage, the following model was used to obtain the BLUEs-by-Env matrix: 

y
ij
= μ + g

i
 + ej + ge

ij
 + εij  

Where y
ij
 is the BLUEs-by-env data, which were obtained in the first stage; μ is the 

constant associated with all observations; g
i
 is the fixed effect of genotypes; ej is the fixed effect 

of environments; ge
ij

 is the fixed effect of the genotype x environment interaction; and εij the 

random effect of the residuals, with ε ~ N (0, σε 
2 ), and is confounded with ge

ij
. 

Using the BLUEs-by-Environments data frame, principal component analyses (PCA) 

were performed using the factorextra R-package (Kassambara and Mundt, 2020). Then, the 
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Euclidian distance (ED) stability index was calculated from the norm of each maize hybrid’s 

scores:  

EDi = √∑ PCki
2

n

k=1

 

where: EDi is the Euclidian distance of the ith maize hybrid; PCki is the score of the 

principal component k for the ith maize hybrid, being k = 1, e n = min (row, column) 

correspondent to the rank of the GxE matrix. 

Using the methodology proposed by Resende (2002; 2004), the MHPRVG index 

(harmonic mean of the relative performance of the breeding values) was also estimated. 

MHPRVG is an alternative index that accounts for both genotype’s stability and adaptability. 

This index can be estimated as follows: 

MHPRVG𝑖 =  
𝑛

∑
𝑉𝑔𝑖𝑗

𝑙𝑖

𝑛
𝑗=1

 

where: 𝑛 is the number of environments where the ith maize hybrid was evaluated; 𝑉𝑔𝑖𝑗 

is the breeding value of the ith maize hybrid in the jth environment; and 𝑙𝑗 is the overall mean 

of the jth environment. 

Finally, the BLUEs-by-environments as well as the stability indices of each maize 

hybrid were used for genomic prediction purposes.  

Genomic prediction models 

The genomic predictions were performed via software R (R Core Team, 2022). The 

Bayesian Ridge Regression (BRR) model was used from the BGLR package (Perez and De Los 

Campos, 2014). The BRR model assumes Gaussian distribution with µ = 0 and σβ
2 ~ 𝑋−2 as a 
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prior of the model, and any further model details are presented in Perez and De Los Campos 

(2014).  

Four strategies were adopted for genomic prediction purposes: i) single-environment 

predictions; ii) directly predicting the stability indices (ED and MHPRVG); iii) predicting 

maize hybrids BLUEs by environments without the GxE interaction; and iv) considering the 

GxE information in the prediction models.  

For the regression function, three linear predictor models were used: 

M1 – G: The main effect of genotypes (G) only, used for single-environment and 

stability indices predictions.  

M2 – G + E: The main effect of genotypes (G) plus the main effect of environments 

(E), being E assumed as fixed. 

M3 – G + E + GxE: The main effect of genotypes (G) plus the main effect of 

environments (E) plus the GxE effect, being E assumed as fixed. 

M1 was used for single-environment and stability index predictions, while M2 and M3 were 

used for multi-environments predictions.  

A simple 10-fold cross-validation (cv) was used for single-environment and stability 

indices, however, for strategies iii and iv, two scenarios were simulated: a) CV1: random 10-

fold cv considering all environments; and b) CV2: predicting whole environments. Ten rounds 

of cross-validation were performed. For each round, the predictive ability was estimated by the 

Pearson correlation between predicted and observed values. The cross-validation schemes are 

represented in Figure 1. 
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Figure 1. Cross-validation 1 (CV1) and 2 (CV2) schemes. 

The predictive accuracy (ACC) was estimated using Gezan et al. (2017) estimators:  

ACC =
Corr (y

obs
, â)

√h
2

 

where: Corr (y
obs

, â) is the Pearson correlation of predicted and observed values; ℎ2 is 

the heritability of the trait under study, being h
2
= 1 - 

σe
2

σy
2, in which σe

2 e σy
2 correspond to residual 

and phenotypic components of variance, respectively. 

For the genomic predictions, it was considered 30,000 iterations and burn-in of the first 

20,000 iterations. The prediction analyses were performed using an Intel Core i5 2.20GHz 

processor and 8.00 GB of RAM.  

Results 

 A preliminary analysis was performed to better understand the dataset. Despite the great 

number of hybrids, only 35 are common between the crop years (Figure 2). Due to the lack of 

hybrids overlapping over the 12 environments, the data was split up into two datasets: 2012/13 

and 2013/14 collection. 
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Figure 2. Number of coincident maize hybrids across the 2012/2013 and 2013/2014 

environments. 

Although up to 309 (2012/2013) and 710 (2013/2014) have been synthetized, only 3 

lines have been involved in most of the crosses. For the 2012/2013 dataset, Line A (L_A) and 

Line B (L_B) were involved in 52 and 61 crosses, respectively. The same lines were used to 

synthetized 134 (L_A) and 116 (L_B) hybrids in 2013/2014 as well. Furthermore, Line C (L_C) 

was a parental for 75 hybrids considering the 2013/2014 dataset (Figure 3).   
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Figure 3. Histogram of the number of crosses that each maize line has been involved in, 

considering both 2012/2013 and 2013/2014 datasets.  

The BLUEs correlations across environments are presented in Figure 4. As expected, 

the low magnitude of the correlations indicates that hybrids' behavior varied across 

environments. Considering the 2012/2013 dataset (in yellow), the correlations ranged from 

0.0422 (E5-E6) to 0.4434 (E1-E6), being 0.2 the average considering the six 2012/2013 

environments.  

On the other hand, for the 2013/2014 dataset (in red) the lower correlation was observed 

between E10 and E12 (0.0075) and the higher between E7-E8 (0.3033), the average correlation 

for this dataset was 0.189. The inconsistencies of the correlations across both datasets (0.023 

on average) corroborate the decision of working with their data separately.  
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Figure 4. Maize hybrids BLUEs correlation across environments. The 2012/2013 dataset is 

highlighted in Yellow, while the 2013/2014 dataset is in red. 

Figure 5 presents the summary of the Principal Component Analysis (PCA). The first 

four principal components explained a large percentage of the total variation present in both 

datasets. PC1 to PC4 explained about 82% of the 2012/2013 variation, while for 2013/2014 the 

first four PC explained 77% of the variation.  



54 

 

 

Figure 5. Summary of Principal Component Analysis (PCA) of the 2012/2013 and 2013/2014 

datasets. 

To better visualize and understand the results, the maize hybrids scores considering the 

principal components 1, 2, and 3 were plotted in Figure 6. Considering the biplots since the 

hybrids in green are near the center of the biplots, their contributions to GE interaction are lower 

than the hybrids represented by the blue dots. Genotypes near the center are more stable.  

For both datasets, most of the hybrids are concentrated near the biplot center (Figures 

6A and 6D), in other words, only a few (not irrelevant) hybrids are very unpredictable across 

the environments.  

The 3D plots aid to understand the maize hybrids considering not only PC1 and 2 but 

also PC3. As closer to the center of the central grid (X, Y, and Z axis equals 0, 0, 0 respectively), 

more stable is the hybrid. 



 

 

5
5

 

 

Figure 6. Principal Components Analysis biplots (A and D), 3D plots (B and E), and Environments biplots (C and F) of 2012/2013 and 2013/2014 

datasets. 
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Figure 6 (C and F) presents the PCA results for the environments. Considering the 

2012/2013 dataset, environments E1 and E6 have similar directions and magnitudes, a pattern 

also observed for E3 and E4. This plot indicates that the dataset can be reduced to 4 PCs without 

losing much information. For 2013/2014, the direction and magnitudes of E7 and E8 are quite 

similar as well.  

The results of the single-Environment predictions are presented in Figure 7. The average 

Pearson’s correlation (predictive ability) for the 2012/2013 dataset fluctuated from 0.13 (E5) to 

0.31 (E4). The average considering all the six 2012/2013 environments was 0.23. The 

correlations for the 2013/2014 dataset were slightly higher, the lower correlations were 

observed in E11 (0.12) and E12 (0.16), while E7 and E8 presented higher correlations (0.36 for 

both). On average, the correlation for the 2013/2014 dataset was 0.27. 

 

Figure 7. Average predictive abilities (correlation) and accuracies for 2012/2013 and 

2013/2014 single-Environment genomic predictions. The estimates were obtained after 10 

rounds of 10-fold cross-validation. 
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In terms of accuracy, a similar pattern was observed (Figure 7). The lower accuracies 

were observed in E5 (0.33), E11 (0.35), and E12 (0.46). On average, the accuracies observed 

were 0.51 and 0.61 for 2012/2013 and 2013/2014, respectively.   

Figure 8 presents the results of the multi-Environment predictions. In general, the results 

for 2013/2014 were more promising than those obtained for 2012/2013. Even though the 

predictions for ED (PC4) and MHPRVG were computationally efficient, only 1.5 min 

(2012/2013) and 6 min (2013/2014) to run a round of 10-fold CV prediction, the M1 linear 

predictor model (G effect only) presented poor predictive ability and accuracy considering ED 

(PC4) for 2012/2013. On average, the correlations for ED (PC4) were -0.079 (nil) and 0.16 for 

2012/2013 and 2013/2014, respectively, while the estimates of accuracy were -0.247 

(2012/2013) and 0.48 (2013/2014).  

On the other hand, the correlations for MHPRVG were encouraging: 0.53 (2012/2013) 

and 0.51 (2013/2014) on average (Figure 8). The predictive accuracies were high: 0.78 and 0.82 

for 2012/2013 and 2013/2014, respectively.  

The results for M2 (G+E) and M3 (G+E+G*E) were similar considering CV1 for both 

datasets. For 2012/2013, the estimates of correlation were 0.56, on average, for both M2 and 

M3. While for 2013/2014 the correlations were equal to 0.75 and 0.76 considering M2 and M3, 

respectively. In terms of accuracy, similar results were obtained: 0.94 (M2 - 2012/2013), 0.90 

(M3 – 2012/2013), 0.98 (M2 – 2013/2014), and 0.97 (M3 – 2013/2014), considering the 

average of the 10 rounds of cross-validation (Figure 8).  

A different scenario was observed for CV2, the correlations were drastically reduced, 

as well as the accuracies. For 2012/2013, the correlations were 0.14, for M2, and 0.10 for M3, 

while the accuracies were 0.23 and 0.16, for M2 and M3, respectively. Considering 2013/2014, 
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these reductions were more severe, the correlations were equal to -0.23 and -0.05 (nil), and the 

accuracies were equal to -0.30 and -0.06 for M2 and M3, respectively (Figure 8).  

    Considering the computational cost, the M3 was time-consuming for both datasets, 

requiring, on average, 6x more time than M2, approximately (Figure 8).  

 

Figure 8. Average predictive abilities and accuracies for 2012/2013 and 2013/2014 multi-

Environment genomic predictions. The estimates were obtained after 10 rounds of 10-fold 

cross-validation. The time required to perform each round of cross-validation is presented near 

the bars. 

Discussion 

The GxE interaction is one of the most important factors that affect plant breeding. This 

interaction plays a crucial role in the genotype selection process (Von Pinho; Silva; Oliveira, 

2022). Tropical environments provide great challenges in terms of biotic and abiotic stresses. 

Considering Brazil’s tropical condition, the safrinha is harshly affected, due to a smaller 
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window for maize planting, a higher risk of drought and insects and disease pressure in 

comparison to the summer season.  

As presented in Figure 4, the low estimates of BLUEs correlations indicate the presence 

of GxE interaction, which can be split up into Genotypes x Locations (G x L) considering within 

the same crop year (2012/13 and 2013/14), and Genotypes x Crop (G x C) years considering 

only coincident hybrids between the 2012/13 and 2013/14 crop years. G x L can be easily 

observed in Figure 4, however, the poor genotypes overlapping across 2012/13 and 2013/14 do 

not allow a good and accurate inference about G x C, even though the great effects of the G x 

Years interaction are well-known (Pereira et al., 2022; Silva et al., 2022). This scenario 

corroborates the decision of working with both datasets separately.    

In terms of the Principal Components Analysis (PCA), it was possible to reduce from 6 

to 4 PCs without losing much information (Figure 5). Although reducing from 6 to 4 does not 

represent a great reduction, in larger datasets (larger number of environments), the PCA strategy 

might be more efficient. The Euclidian Distance has been used to measure genotypes’ stabilities 

(Nzuve et al., 2013; Yamamoto et al., 2021; Yue et al., 2022a; 2022b). This index considers the 

genotype’s contribution to the total variation presented in the dataset. The smaller its 

contribution, the higher the genotype’s stability (Nzuve et al., 2013).    

Figure 6 is very informative for both datasets. The blue dots, in Figures 6A and 6D, 

represent the “unpredictable” (low stability) hybrids. Stability is crucial for genotype selections 

and can be a decisive factor in terms of the advancement or not a given hybrid due to its 

associated risks (Santos et al., 2019; Von Pinho; Silva; Oliveira, 2022). In addition, Figures 6C 

and 6F represent the relationship between the environment, as previously mentioned E1 and E6 

have the same directions and similar magnitudes (Figure 6C) which corroborate with the results 

presented in Figure 4 (E1-E6 correlation equals 0.44). The same pattern was observed for E7 
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and E8 which presented the highest correlation (0.30) across the 2013/2014 environments 

(Figure 4).  

The single-Environment predictions (Figure 7) were low to medium magnitudes, which 

is okay considering the low heritability of yield trait and the complexity of the dataset. Good 

genotype representation associated with good phenotypic data is crucial to achieving good 

prediction results, in other words, a more representative population, in terms of the number of 

crosses per line, is better for predictions. Atanda et al. (2021) and Fristche-Neto et al. (2021) 

have shown the implications of the population structure in maize hybrids' genomic predictions. 

Considering cross-validation schemes, maximizing the relatedness between training and 

validation sets is essential. Briefly, well-design genotypes set (training and testing populations) 

is required to achieve good results (Windhousen et al., 2012; Riedelsheimer et al., 2013; Atanda 

et al., 2021; Fristche-Neto et al., 2021). Such a scenario was not achieved considering the 

presented dataset.  

As presented in Figure 3, considering the 2013/2014 dataset, 107 lines were involved 

only once to synthesize the maize hybrids, therefore, most of the lines had poor 

representativeness. For the 2012/2013 dataset, 17 lines were used only once, while 49 lines 

were involved in two different crosses. 

The results of the multi-Environment predictions (Figure 8) vary depending on the used 

approach. The Euclidian distance (ED) results were not satisfactory. For both datasets, the ED 

results were the lowest considering the CV1 for M1 (ED and MHPRVG), M2 (G+E), and M3 

(G+E+G*E), highlighting the difficulty to work only with GxE interaction. 

A different scenario was observed while predicting the MHPRVG. As this index also 

considers the performance of the hybrids per se, even though the GxE is presented, the best 

hybrids should present the best performance across the environments (Resende, 2007; Mendes 
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et al., 2012; Yamamoto et al., 2021). In other words, although the behavior of the hybrids varies 

across the environments, the best genotypes (higher MHPRVG) outperform the bad ones (lower 

MHPRVG). The correlation result (0.52 on average) for this approach was satisfactory, 

considering the complexity of the dataset and the computational costs. Therefore, the MHPRVG 

index outperformed both the ED index and the single-Environment approach.  

Although its higher computational cost, the M2 approach was also satisfactory (Figure 

8). In comparison to MHPRVG, considering CV1, the M2 correlation results were slightly 

better (+6%) for the 2012/2013 dataset, while for the 2013/2014, the M2 approach improves 

the correlation results by 47%. Therefore, despite the computational cost, for both datasets, 

multi-environment predictions (without modeling the GxE) were consistently better than 

predicting a stability index (ED or MHPRVG). Additional studies, considering well-designed 

genotype sets (training and testing populations), are still required. 

The results of M3 indicate there was no advantage in including the GxE interaction in 

the prediction model (Figure 8). Still considering the CV1, the higher computational cost of M3 

(in comparison to M2) did not justify its use, since, in terms of predictive ability and accuracy, 

no gain was observed. On the other hand, the advantages of modeling the GxE interaction are 

widely reported in the literature, however, its positive impact highly depends on other factors 

such as significant GxE (Crossa et al., 2022), environmental and genetic similarities (Rogers 

and Holland, 2021).  

 By modeling the GxE, Montesinos-López et al. (2015) achieved 9-14% gains when 

predicting the resistance to gray leaf spot in maize lines, while Acosta-Pech et al. (2017) 

achieved 16.73% gains, on average, when predicting maize hybrid grain yield performance. 

Predicting kernel zinc concentration in tropical maize germplasm, Magento et al. (2020) 
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obtained better correlations when modeling the GxE either predicting newly developed lines 

(CV scheme 1) or predicting the performances in sparse multi-location trials (CV scheme 2).   

In addition to well-designed genotypes set, to achieve satisfactory results, good 

genotypes-by-environments overlapping is required. The overlapped genotypes, which are the 

common genotypes across all the environments, work as a connection across the environments. 

Jarquín et al. (2020) found that 15% of genotypes overlapping was enough to reduce 

phenotyping costs without significant losses in prediction accuracy. The intensity of genotypes 

overlapping may change due to dataset characteristics, however, it is common sense that larger 

training population sets associated with good genetic relationships between training and testing 

populations are better for predictions (Sánchez and Akdemir, 2021). 

The lower results were expected for CV2. However, in this study, M2 and M3 presented 

very poor results considering whole environments predictions (CV2). It is well-known that 

predicting whole environments is very complex and often results in lower prediction accuracies 

as observed in Jarquín et al. (2017), Roorkiwal et al. (2018), Persa et al. (2021), and Westhues 

et al. (2021). Although this approach could be very interesting, in terms of resource-saving, its 

effectiveness is questionable, due to the greater reductions in the predictive ability. In this sense 

partitioning the whole hybrids set across the environments (sparse phenotyping) is a better 

strategy to save resources without losing predictive ability (Jarquin et al., 2020; Sánchez and 

Akdemir, 2021).  

In addition, environmental covariables (EC) could also be used to better connect the 

environments, enhancing the accuracies of whole environments predictions. The so-called 

envirotyping consists of the determination and measurement of all the environmental factors or 

ECs that can affect plant growth and yield (Xu, 2016). These factors are then processed aiming 

to describe the development of an organism in a target environment and can be used to create 
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envirotyping-based kinships (Costa Neto et al., 2021a), enhancing GxE modeling in a genomic 

prediction perspective. Gillberg et al. (2019) and Costa-Neto et al. (2021b) have shown the 

advantages of using EC. On the other hand, Jarquin et al. (2021) observed no gains with the 

inclusion of EC in the GxE model, therefore, additional studies are still required.  

Unfortunately, the used dataset lacks on some essential environmental information such 

as precise planting date, soil type, coordinates, altitude, and others, which makes the dataset not 

appropriate for this purpose. 

Conclusion 

The MHPRVG index outperformed Euclidian Distance in both datasets (2012/2013 and 

2013/2014). Considering its performance and computational cost, directly predicting the 

MHPRVG might be efficient for genomic selection purposes. 

The Multi-Environmental (M2) approach achieved higher correlations, outperforming 

the ACC of MHPRVG in 17% (2012/2013) and 16% (2013/2014) using feasible computational 

resources. No gain was observed by including the GxE interaction (M3), not justifying its higher 

computational cost (7fold).  

Additional studies using better-designed datasets are still required. 
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