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Abstract
Bluetooth (BT) data has been extensively used for recognizing social patterns and inferring social networks, as BT is widely
present in everyday technological devices. However, even though collecting BT data is subject to random noise and may
result in substantial measurement errors, there is an absence of rigorous procedures for validating the quality of the inferred
BT social networks. This paper presents a methodology for inferring and validating BT-based social networks based on
parameter optimization algorithm and social network analysis (SNA). The algorithm performs edge inference in a brute-
force search over a given BT data set, for deriving optimal BT social networks by validating them with predefined ground
truth (GT) networks. The algorithm seeks to optimize a set of parameters, predefined considering some reliability challenges
associated to the BT technology itself. The outcomes show that optimizing the parameters can reduce the number of BT data
false positives or generate BT networks with the minimum amount of BT data observations. The subsequent SNA shows
that the inferred BT social networks are unable to reproduce some network characteristics present in the corresponding GT
networks. Finally, the generalizability of the proposed methodology is demonstrated by applying the algorithm on external
BT data sets, while obtaining comparable results.

Keywords Ubiquitous computing · Bluetooth · Social networks · Algorithms

1 Introduction

As an integral part of personal communication devices and
integrated in many ubiquitous computing systems, Blue-
tooth (BT) is one of the most prominent technologies for
acquiring social proximity traces. The research community
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has initiated a transition of research methods to reliably rep-
resent real-life social connections [9, 43]. Compared with
the long-established practices such as deriving social net-
works based on questionnaires or diaries, ubiquitous com-
puting solutions promise a faster, cheaper, and larger scale
data collection process. BT makes an ideal foundation for
performing field research experiments with its unobtrusive
nature of collecting data.

However, inferring social networks from BT data comes
with significant challenges. First, the collected BT data
is subject to random noise and may contain substantial
measurement errors [15–18]. Often neglected, these errors
are propagated to the next phase of a research experiment,
which commonly involves analyzing the properties of
the BT inferred networks. The absence of ground truth
(GT) networks (or any alternative method) for validating
the inferred BT networks is another drawback. In many
previous research studies, no ground truth information is
available for validation, leaving researchers with under-
determined problems and random tuning of network model
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parameters [51, 52]. As shown in Section 2, the majority
of previous studies ignore validation procedures of their
inferred networks. They assume that the collected BT data
are the network itself, while in fact, the inferred networks
are derived based on the measured interactions, and are
strongly dependent on the quality of the collected data.
Many network inference methods are relying on parameter
thresholds that are hand-tuned or based on domain expert
knowledge. As a consequence, the presented inference
processes are suitable only for ad hoc, specific network
scenarios. There is an evident lack of research contribution
for generic inference procedures and rigorous validation
methodologies when deriving social networks based on BT
(or other ubiquitous) technology. Finally, the full process of
network inference (being based on trial-and-error fashion)
is unfortunately rarely reported by previous studies. By
presenting only the final description of the network, the
readers lose valuable information on the whole process of
inferring the social networks that can be beneficial for the
design of future BT-based data collection systems.

This paper addresses the abovementioned challenges
and considers the process of inferring and validating BT-
based social networks as a parameter optimization and
social network analysis (SNA) problem. It presents an edge
inference–based methodology for obtaining BT-based social
networks. In this network inference approach, the network
nodes are already known while the challenge is to infer
edges that reliably represent “real-life” connections. The
proposed methodology for optimal social networks infer-
ence from noisy BT data consists of two components. First,
a Bluetooth Network Validation Algorithm (BVA) deliv-
ers the best estimate of the underlying network based on
a brute-force search space of a predefined set of input
parameters. The final parameter threshold selection is derived
by validating all the inferred BT networks with GT networks,
rather than hand-tuning or relying on expert knowledge. All
the possible inferred BT networks are labeled with partic-
ular accuracy as a validation measure. The accuracy gives
an indication of the success of the edge-inference pro-
cess, as it measures to what extent (in terms of present/
absent edges) the generated BT networks represent the corre-
sponding GT networks. Second, a SNA compares the opti-
mal BT networks with their GT counterparts to delve into
and report the potential structural network differences. A
set of well-known network metrics for both global and local
network properties were used in order to conduct the SNA.

The three BVA input parameters are defined considering
a set of reliability challenges associated to the BT tech-
nology itself. The connection weight parameter tackles
the issue of false positives in the network inferring process
[11], as BT-derived proximity is not always an indicator
of real social connection [19]. The window size parame-
ter tries to establish the minimum number of days of BT

observations to produce reliable networks, an essential
point for the battery drain issue at used devices. The
connection type parameter gives an idea of the influence
of a particular network design choice (directed or undirected
networks) on the inferred network accuracy.

This paper is an extended version of the work published
in [44]. The previous work was broadened by including
SNA as part of the proposed methodology, and performing
generalizability tests using external BT data sets. The
methodology was applied to three distinct BT-based data
sets. The motivation of adding SNA comes from the fact
that BVA accuracy as a validation measure has a limited
explanatory power of the actual differences among the
GT and BT networks. The generalizability of the BVA
algorithm was tested on external BT data sets, besides
running the algorithm on the school classes data used in
[44]. This is an important step for creating reproducible
methodology that can be used by other researchers working
with BT social networks.

To summarize, the main contributions of this paper are:

– Developed a methodology for inferring and validating
BT-based social networks via the BVA algorithm and
SNA

– Performed throughout quantitative analysis of the
network inferring process

– Proved the generalizability of the BVA algorithm by
testing the approach on external BT proximity data

The remainder of the paper is organized as follows.
The next section presents previous research on BT-based
pervasive systems, showing the limitations of using BT data
for interpretation of human behavior and the limitations of
the BT technology itself. Section 3 introduces the proximity
data set used in this experiment. Deriving both the GT and
BT networks is explained in Section 4. Section 5 defines
the BVA algorithm. The algorithm’s outputs are thoroughly
presented in Section 6. The SNA procedure is demonstrated
in the subsequent section. The paper ends by discussing the
methodological importance and concluding the presented
work in Section 9.

2 Background

Understanding the limitations of the BT technology for
characterizing human behavior is a first step towards
developing reliable BT data collection system, and was
already investigated by [10, 11, 39]. The main identified
limitations are the person-device uncertainty, the granularity
(sample period) of the BT traces, and the bias caused by
the particularities of the BT technology itself. The person-
device uncertainty looks at the ambiguity of the detected
interaction, and questions if this interaction indeed appears
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between humans. In order to reduce this uncertainty, there
are several events that should be detected from the collected
BT data and properly labeled for the analysis to come.
For example, people forget their devices, the device is
malfunctioning or people are coincidentally in proximity
with others. The granularity and quality of the collected BT
traces depends on the type of pervasive devices that are used
in the experiment. For instance, smartphones come with a
limited set of BT configuration options, mostly in order
to save battery. The standard smartphone configurations
restrict high BT data collection granularity, which can be
critical to detect short events as already experienced by [1,
38, 39]. Finally, the particularities of the BT technology
itself posses some limitations. As shown in [10], the rate of
false negatives (not detecting a device that is in proximity)
increases when more devices are connecting to a wireless
medium.

Numerous research have used BT data for recognizing
social patterns, inferring social relationships and creating
networking structures [1–6]. In addition, the versatility of
BT data have been demonstrated by leveraging BT for
context-oriented opportunistic networking applications and
epidemic modeling [20–22], or even influencing mental
health [7]. The inferred BT networks have been applied to
many domains for providing improved networking services
[2], designing communication overhead algorithms [4], or
modeling social distance measures [20]. Several works in
the context of inferring social connections from BT data
are described below. Dynamic networks were created using
longitudinal multi-modal data in [40], where researchers
observed cores and social groups among around 1000
Danish students that have participated in the study. They
were able to predict social behavior and patterns (ex.
social gatherings and meetings) on multiple timescales. In
the NSense project [41], the researchers have developed
social interaction model for contextualizing nearness with
two functions that model both social interaction and
propinquity. They have as well relied on multi-modal
data (including BT) for conducting a set of experiments,
concluding that connected nodes exhibit symmetric patterns
of social interaction, and proved that their functions can
model the nearness context. Dynamic social networks
were mapped based on BT data in [42], where multiple
network metrics were used to quantify changes in network
topology over time. The researchers discovered correlation
between the egocentric network metrics and the scanning
rate, therefore confirmed that research outcomes can be
strongly dependent on the BT technology limitations. They
emphasized that both scanning rate and missing data need
to be taken into consideration when deriving BT networks.
Using BT signal strength to distinguish between transient
and important social interactions was explored in [28],
demonstrating that weak links have a lower probability of

being observed at later times. In addition, this work showed
that removing links with low signal strength influence the
network structure.

Evidently, the interplay between BT technology and
social networks has motivated a substantial amount of
multifaceted research. However, many of the previous
studies have one or more important some shortcomings:

– They fail to use a GT network or any other method for
validating the inferred BT networks;

– They make scientific conclusions based on the inferred
networks without considering the technological con-
straints of the BT technology (explained at the begin-
ning of this section);

– They fail to report trial-and-error results during the
network inference process, and instead present only a
final inferred BT network.

Previous research have developed many methodological
approaches for inferring social networks from (BT) data.
These are found over different application domains and
rely on particular knowledge to infer and measure the
quality of the inferred networks. The presented research
focuses on a specific subset of network inference, where
nodes are known and the task is to perform edge inference.
Edge inference is commonly approached by evaluating
models via prediction, or inferring parameters on an
assumed parametric model on the data. The goal of
predictive methods, used by [8, 26–28], is to model some
predictive aspects of the underlying data in order to infer
relationships between entities. On the other hand, the
parametric models usually rely on a domain knowledge
base in order to construct the BT networks. These models
make assumptions on the edge distribution, for example by
leveraging maximum likelihood estimation [22]. Another
category is non-parametric models that use statistical tests
to determine edge weights [23–25].

3 Data

The data was collected as part of the MyMovez project,
by means of a research app shared among pupils in 21
primary and secondary schools in the Netherlands [12]. This
project has generated a unique longitudinal large-scale data
set (N = 953) during a 3-year period. The set contains
sociometric data and surveys, physical activity, BT scans,
location, photos and chat conversation data, among others.
The data is collected via the Wearable Lab consisting of
smartphone app connected to an activity tracker.

This study exploits the data collected during the first
year of the MyMovez project. This data was collected
in three data waves: February/March 2016 (Wave 1—
W1), April/May 2016 (Wave 2—W2), June/July 2016
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(Wave 3—W3). Each wave consists of five consecutive
days, out of which three school days and two weekend days
(not in this particular order), labeled as D1–D5.

The participants had the MyMovez app installed on ded-
icated smartphones that were used besides their (possible)
private devices during the measurement periods. On the
starting day of the experiment, researchers have instructed
the children on how to use the handed-in materials, i.e.,
the smartphone and the activity tracker. Each participant
received a Motorola Moto G (gen 2) smartphone and Fitbit
Flex (gen 1) activity tracker.

3.1 BT networks data set

The BT data collection logic has been programmatically
implemented in the MyMovez app. The app scans and
detects other participants’ phones that are in range of
approximately 10 m. Total 50 BT scans were performed
during each day. A new scan was run every quarter-hour,
starting at 07:00 until 19:00. The scan periods were labeled
as S0–S49. The time span of each scan period varied
between 3 and 5 min, during which nearby devices were
able to detect each other. Each BT entry (row) in the
database contains the following information: School, Class,
Wave, Day, Date, Time, Child ID, Detected Child ID.

Data cleaning procedure was performed in two steps.
First, some of the participating classes were removed from
further analysis. In total, 953 children and adolescents
in 196 unique classes were part of the first year of the
MyMovez project. However, as participation in the project
was voluntary, participation rates in the classes varied. In
some of the classes, almost all pupils were enrolled, but
in most of the classes only a few of the pupils were par-
ticipating. To obtain a reasonable reflection of the social
process in the classes, only the classes in which the par-
ticipation level was higher than 60% of the total number
of pupils were included. Missing nomination-based data
affects the quality of information obtained for all group
members. For example, if 40% of class is participating in a
nomination-based study, one also knows just 40% of the
relations of the participating peers. As a result, the authen-
ticity of the derived GT social networks is question-
able. Although there is no clear-cut threshold value to be
recommended, this study has used thresholds based on
previous reliability estimation studies [46, 50] of peer-
nominated data. They have investigated the effects of differ-
ent participation rates on the reliability of peer nomination
data using statistical measures, which give an estimate of
the degree to which nominators agreed upon which nomi-
nees best fit a given nomination criterion. In our study, this
resulted in 26 school classes that satisfied these participation
requirements (60% of class).

In the second step, data quality (availability) analysis was
performed on the obtained BT data among the 26 classes,
as presented below. There is a significant variation in the
data collection quality among these classes, as the number
of BT data collected varied between 358 and 19,229 BT
observations (all waves combined), as shown in Fig. 1.
Classes with IDs A, B, and C had a significantly higher
number of BT observations, compared with the rest. Not all
50 scan periods within a day collected BT data (this is valid
case for all classes), and the data was not evenly collected
by the participants, as shown in the lower left image of
Fig. 1. On average, the participants have data in 18% of the
predefined scan periods, as the data was primarily collected
only before and after school hours, and during class breaks.
A further example is shown in Fig. 1 the lower right figure,
depicting the scan periods distribution of ClassA aggregated
over all data waves. BT observations were obtained at only
29 out of 50 possible scan periods per day. The success
of a scan period overlaps with particular events happening
during that time of the day. For the ClassA participants,
school day begins at 08:20 in the morning (represented by
S5 and S6, at 08:00 and 08:15), first break time is from
10:00 to 10:25 (corresponding with S13 and S14, starting
at 10:00 and 10:15). The second break starts at 12:05 until
12:35 (S22 and S23), while the school day ends at 16:05 as
represented by S38 in Fig. 1.

The five classes with the highest number of BT obser-
vations were selected for the final analysis. The class with
ID A is the principal point of the analysis described in
the remainder of the paper. Four additional classes were
included to test the generalizability of the BVA algorithm,
with IDs: B, C (same school with class A) and D, E
(belonging to another school).

Table 1 gives some final details on the collected data
among the classes selected for the analysis. The partici-
pation percentage varies between 62 and 80%. There are
sizable differences between the number of BT observa-
tions among classes, but also between waves within a class
itself.

3.2 GT networks data set

The participants were asked to complete a set of 16 peer
nomination questions at the beginning of each wave. A
subset of 6 nomination (sociometric) questions were used
in order to derive the ground truth (GT) networks. In these
questions, participants were asked to nominate peer(s) from
their class that they ask for advice, they consider as leader,
they are friends with, they respect, they hang out with, and
they want to be like. The exact set of the research validated
nomination questions together with their references can be
found in Table 2.
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Fig. 1 BT data quality statistics. Upper image shows the distribution
of the collected BT observations among the 26 school classes labeled
from A–Z. The lower left image presents the percentages of success-
ful scans among users. Forty-four percent of participants had collected

data in 10–20% of scan periods. The successful scan periods of ClassA
(aggregated over all waves) are depicted in the lower left figure

4 Building the social networks

4.1 Bluetooth-based social network

The BT networks are inferred upon the BT data set
described in Section 3. The connection weight between two
nodes i and j is defined as:

wi,j = num connections(i, j) + num connections(j, i) + α

num scans(i) + num scans(j) + β
.

(1)

where num connections(i, j) is the number of scan peri-
ods in which node i detected node j , and num scans(i) is
the total number of successful scan periods of node i. Note
that wi,j = wj,i for each connection, and range between
[0,1]. Two additional parameters α and β are included

in the weight calculation in order to compensate for the
difference in number of scans among the node pairs, as
shown in Fig. 2. The problem with the imbalanced num-
ber of scans is that naively calculating the weight can
assign the same weight for pairs with different scan activity.

Table 1 Classes data set description

ClassID Participation (%) Bluetooth observations (#)

Total W1 W2 W3

A 18/29; 62% 19,229 5560 9558 4111

B 20/30; 67% 17,468 11,117 3050 3319

C 20/29; 69% 12,145 10,347 1484 314

D 20/25; 80% 3734 1794 1822 118

E 19/28; 68% 3165 1822 755 588
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Table 2 Peer nomination questions

Measure description Survey question

Advice network [32] 1 item assessing who participants go to for
advice

Friends network [34] 1 item assessing who participants are
friends with

Leader network [32] 1 item assessing who participants con-
sider as leaders

Respect network [32] 1 item assessing who participants respect

Social facilitation net-
work [33]

1 item assessing who participants hang
out with

Want to be network [32] 1 item assessing who participants want to
be like

For example, the same weight w = 1 will be calcu-
lated for pair (983, 973) and pair (965, 973), even though
the num scans(983) + num scans(973) = 44 while
num scans(965)+num scans(973) = 5. Laplace smooth-
ing [13] was used in order to give the detected connection

a certain level of confidentiality and normalize the weight
according to the level of nodes’ scan participation. The two
parameters α and β represent the estimation of appropriate
weight when no information about the BT observations is
available. The parameter values should be fitted to the par-
ticular problem scenario. For this weight calculation, α = 0
and β = 1 as it biases the results towards 0, meaning the
weight value is reduced, even more with smaller num scans

values.
Intuitively, the BT networks can be considered as

undirected. The connection between nodes i and j

gives information about their mutual discovery in the
physical space, no matter if for some technical reason
node j cannot detect node i. In the undirected BT
networks there is a single edge between two nodes.
The second network representation (as required by the
connection type parameter) is the directed BT networks.
Here there are two edges between nodes: an edge from i to
j with wi,j and another edge in the opposite direction with
wj,i , where wi,j = wj,i .

Fig. 2 An example connection heat map between all participants of
the ClassA, based on W2 data. The participants are labeled with three
digits starting with 9. Each square of i row and j column is labeled

with num connections(i, j). The table on the left gives information
on the number of successful scans per participant
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4.2 Ground truth social network

Each participant can nominate multiple peers on any of
the 6 nomination items presented in Table 2. The label
qnnominationi,j represents the nomination of node i to
node j on the particular question qn.

First, the directed GT networks are described. Given two
nodes i and j , the edge ei,j directed from i to j has weight
wi,j based on the number of nominations that node i gave
to node j . Having an edge ei,j does not mean that edge
ej,i exists as well. For example, an influential individual
might not nominate all the nodes that on the other hand have
nominated him/her. The weight of the directed edge from
node i to node j is given by (2).

wi,j =
∑6

n=1 qnnominationi,j

6
. (2)

where
∑6

n=1 qnnominationi,j is the sum of all nominations
that node i gave to node j .

In the second network representation, the GT networks
are considered as undirected. In this case, the mutual
nominations between node i and j are summed up and
divided by 12 (6 from node i and 6 from node j ) to obtain
the strength of their relation. In both network scenarios, the
GT network is weighted in range [0,1].

5 BVA algorithm

The goal of the BVA algorithm is to find the best solution
(the optimal set of input parameters) for deriving an optimal
BT network given a certain GT network. Three input
parameters are considered during the brute-force search
space on the input BT data for inferring BT networks:

1. connection weight is used to identify the set of
genuine connections in the derived BT networks, rather
than “random encounters” connections. Only the edges
with w >connection weight are part of a particular
inferred BT network, potentially reducing the noise of
random encounters.

2. window size gives a time dimension to the inferred BT
networks. The window size can be altered on day and
scan period(s) during a particular day. This parameter
estimates the time and the number of BT observations
needed in order to have an reliable representation of GT
network.

3. connection type considers both directed and undi-
rected social networks. This parameter depicts the
consequence of a particular design approach on the
accuracy of the inferred BT social networks.

The BVA algorithm was run separately for each of the
three data waves (W1, W2, and W3). Each wave represents

a distinctive data collection process executed two months
apart. A single GT network is generated for each wave and
connection type, based on the peer nomination questions.
On contrary, a large set of BT networks are inferred for each
wave and connection type, based on the input parameter
ranges defined in Table 3. The algorithm infers a new
BT network for each combination of the input parameters.
The inferring process of a BT network is explained in
more detail below. First, BVA considers the window size
parameter and subsets the BT data according to the days
and scan periods. With this, the inferred BT network is
given a certain time dimensionality. For example, one BT
network is generated based on the BT data collected until
Monday afternoon, while another BT network is built upon
the whole five days of data collected. In the following
step, the connections between peers are created based on
the time-subsetted BT data. The connections are given
a direction or not, depending on the connection type

parameter. Finally, the edge weights smaller than the
connection weight parameter are removed, giving the
final inferred BT network.

The value of connection weight was restricted to a
maximum of 0.6. From a technical perspective, generating
BT networks with higher connection weight thresholds
result in non-representable real-life scenarios. This is
expected from two reasons, the limitations of the BT
technology itself and the BT data set incompleteness,
which are both explained above. Not all BT scans were
successful or collected data about nearby devices, and
the used data set have a significant number of missing
scans. As example, having a connection weight = 0.7
generates a BT network representation where all the
connected nodes were scanned and found each other in
70% of the time or window size. Having this threshold
would remove all the connections between nodes where
the connection weight < 0.7. The limitations of the
data set would therefore result in many edges being
dismissed. On the contrary, it is expected that not all
school class members have strong mutual connections, but
rather the school environment is a mix between weak
and strong ties. To further showcase this question, Fig.
3 demonstrates the scenario of running the BVA with

Table 3 Input parameters for the BVA algorithm

Parameter Ranges

connection weight (0.0–0.6) with stepsize 0.01

window size(day) D1, D2, D3, D4, D5

window size(scan period) S3, S4, S5, S6, S13, S14, S22, S23

S30, S38, S39, S40, S41, S42, S43

connection type Directed, undirected
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Fig. 3 Creation of isolated
nodes in networks (expressed as
percentage of class size) as a
result of increasing the
connection weight . The BVA
is run with connection weight

between 0 and 1 (step size 0.01)
and using all days (n = 5) and
BT scan periods (n = 15)
available

connection weight ranging between 0 and 1, using all BT
scans and days of data, therefore the maximum number
of BT observations collected per class. It can be observed
that for all five classes, increasing the connection weight

results in deriving BT networks with a certain amount of
isolated nodes (nodes without connections) in the network
representations. There is an evident jump in the percent
of isolated nodes around the 0.6 point, which served
as a motivation to set this threshold. A consequence of
dismissing edge connections when connected weight is
around 0.6 was creation of significant percentage of isolated
nodes in the networks, which does not necessarily reflect
isolation in the real-life school class, given the above
explanation. We consider the isolated nodes as non-realistic,
although we realize that there might be specific real-life
situations in which social isolation actually exists; however,
it is unlikely that this is reflected in isolated nodes generated
based on the BT data, as even socially isolated school
children will be in the vicinity of other pupils. Therefore,
the algorithm generates connection weight values with step
size of 0.01 and a maximum of 0.6, resulting in an input set
of 60 values.

The window size parameter was defined on both day
and scan period granularity. All five days were taken into
consideration by using the combination formula

(
n
k

) =
Cn,k = n!

k!(n−k)! with n = 5 and k = 1, resulting in the
following combinations: (D1), (D1 and D2), (D1 and D2
and D3), etc. In addition, the day granularity was enriched
with the scan periods that appeared during a particular
combination of day(s). As the BT data is collected unevenly
among the scan periods, only the non-trivial scans (at least
30 BT observations per scan) were considered. As a result,
16 scan periods were used with labels as shown in Table 3.
The scan periods were combined in a similar manner like
days: (S3), (S3 and S4), and (S3, S4, ... SN).

The connection type parameter had two variations:
undirected and directed networks.

In the second phase of the BVA algorithm, each inferred
BT network is validated using the reciprocal GT network,
for each wave and connection type.

The BVA algorithm’s validation measure is classification
accuracy. Accuracy is a convenient metric for binary
classification problems with (nearly) balanced classes, like
the one being solved in this paper. Essentially, BVA checks
for edge presence in the inferred networks. The accuracy is
defined as:

accuracy = T P + T N

T P + T N + FP + FN
(3)

where T P (True Positive) represents the number of edges
found in the BT network, also existing in the GT network;
T N (True Negative) represents the number of edges not
found in the BT, also not existing in the GT network; FP

(False Positive) represents the number of edges found in the
BT network, but not existing at the GT network; and FN

(False Negative) represents the number of edges not found
in the BT network, but are found at the GT network. The
accuracy value varies in the range of 0 to 1.

6 BVA outcomes

The BVA algorithm was run separately per class and data
wave. A brute-force search was executed based on the
input parameters defined in Table 3. The following analysis
gives most details of ClassA results, but also presents the
outcomes of the other four classes as first step to test the
algorithm’s generalizability.

First, the magnitude of the obtained accuracies is
discussed. Table 4 gives a detailed overview of the obtained
accuracy ranges for the five classes for each wave and
connection type. The accuracy values vary significantly
between the possible BT network representations of
particular class and wave. This comes with no surprise



Pers Ubiquit Comput

Table 4 Accuracy range of the inferred BT networks

W1 W2 W3

Class DIR UND DIR UND DIR UND

A (.48, .61) #14 (.60, .72) #23 (.49, .58) #16 (.51, .65) #41 (.48, .60) #17 (.63, .74) #32

B (.37, .59) #16 (.70, .80) #38 (.51, .64) #20 (.74, .78) #13 (.47, .57) #19 (.67, .79) #38

C (.47, .61) #25 (.55, .75) #70 (.53, .59) #10 (.66, .70) #13 (.41, .49) # 5 (.60, .65) # 7

D (.48, .60) #11 (.64, .72) #14 (.44, .50) #11 (.57, .63) #19 (.57, .64) # 4 (.73, .76) # 4

E (.37, .59) #16 (.67, .83) #24 (.33, .47) #12 (.59, .70) #18 (.50, .66) #10 (.69, .85) #19

given the possible combinations of the input parameters,
as 4800 BT network representations were generated for
each class, connection type and wave. Accuracy variation
is therefore expected, as these BT networks are generated
with different input parameters (representing different time
spans or connection weights), and are all compared with a
single GT network representation. For example, the 4800
inferred BT directed networks obtained for ClassA and
W1, have an accuracy range between 0.48 and 0.61. This
implies an 13% accuracy difference between the least and
most accurate inferred BT directed network of ClassA and
W1. The highest within-class accuracy range variation is
observed at ClassB directed BT networks of W1, with
accuracy difference of 22%. On the other hand, the accuracy
difference is lowest among the 4800 BT networks obtained
for ClassB and ClassC undirected networks (at W2), with
only 4%. The detected accuracy variations only confirm that
there might be many possible representations of a real-life
network, depending on the BT network design decisions.

The observed ranges give the first implication of the BVA
generalizability: the accuracies among different classes and
waves evidently follow a similar pattern. The undirected
BT networks are more alike their GT networks counterpart,
compared with the directed BT networks. The ranges of
obtained accuracies at undirected BT networks vary from
approximately 51 to 85%. On contrary, the directed BT
networks have accuracies of 33 to 66%. Table 4 additionally
presents the number (#) of distinct accuracy values, i.e.,
distinct BT networks. This metrics shows that there can be
many possible BT network representations inferred from
the same BT data source. The number of unique BT
networks varies from 4 to 70 among classes, data waves, and
connection type.

Certain design decisions can therefore lead to selecting
an non-optimal BT network. For instance, there are 14
options for choosing a particular directed BT network
within ClassA W1 results. In this case, there is a 13%
potential accuracy loss when the least accurate BT network
is selected. This metrics also shows that the number
of distinct BT networks is significantly lower than the
total number of derived BT networks. The high level of

isomorphism among the inferred BT networks is illustrated
in Fig. 4. Two networks are isomorphic if they have the same
number of nodes connected in the same way. For instance,
total 685 derived BT networks of ClassA W1 have the same
accuracy of 0.50 and 9 BT networks have the identical
maximum accuracy of 0.61. The isomorphism among the
inferred BT networks is expected given the big granularity
of the BVA input parameter set.

The observed isomorphism raises the question of how to
select the single optimal BT network among (potentially)
more than one optimal BT network? In case the optimal
accuracy is equivalent at two or more BT networks, the BVA
selects the BT network that was generated with fewer BT
observations. In case of another tie at the number of BT
observations, the BVA looks at the number of days and scan
periods required to derive the networks. In this final case,
the optimal BT network is the one being created with fewer
number of days and/or scan periods.

The optimal BT networks were selected based on the
above described procedure, and are shown in Table 5,
along with the parameter values used to obtain them.
The Parameters column in Table 5 shows the optimal
parameter set in the form (W, D, S) representing the
connection weight value, followed by window size’s
number of days and number of scan periods, respectively.
For example, the optimal ClassA W1 BT directed network
(with accuracy = 0.6143), is derived using BT observations
from first two days and 12 scan periods, and including edges
with weights bigger than 0.40. The achieved accuracies of
the optimal networks are again considerably higher (around
20–25%) at undirected BT networks. The highest optimal
accuracy is obtained in the case of ClassE W1 undirected
BT network with accuracy = 0.8545. This BT network
therefore represents approximately 85% of the connections
in the corresponding ClassE W1’s undirected GT network.
On contrary, the lowest optimal accuracy is obtained
at ClassC W2 directed BT network with accuracy of
0.4909.

The optimal connection weight values vary among
waves and network types, and are always higher than 0.0.
This confirms that having a certain connection weight
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Fig. 4 Distinct accuracies and
the corresponding number of BT
networks, obtained from the
BVA algorithm (for ClassA).
Both W1’ directed and
undirected BT networks and
their accuracy are displayed

value removes a level of noisiness in the BT data. The
optimal window size in order to infer the final BT
networks is often less than 5 days. This implies that more
days of data collection does not necessarily mean more
accurate BT networks. On contrary, two days of BT data
are enough to infer 50% of the optimal BT networks (with
15/30 times), followed by five days with 30% of cases (9
times) and three days with 20% of cases (6 times).

Table 5 also shows the number of BT observations
(#BT) that were used to obtain the optimal BT networks.
Since the number of collected BT observations varies
significantly among classes, the ratio of used versus total
BT observations per class is used as an objective statistic.
At least 79% of the collected BT data are used to infer
the ClassD and ClassE optimal networks. Unsurprisingly,
since these classes have much less data compared with
ClassA, ClassB, and ClassC. There is a bigger variety in
the percentages of the latter classes, for which the data
collection process was more successful. Rarely, more than

80% of the collected BT data was used (at only 5 of 18
cases). Most commonly we observe that about 40-70% of
the BT data was capitalized (at 9 cases). In two exceptional
scenarios only 7% and 16% of the BT data was enough for
inferring the optimal BT networks.

More detailed perspective of the ClassA outcomes is
presented next. The visual representation of three particular
scenarios of BVA parameter space search are displayed
in Fig. 5. The first and second scenario (left and center
image) shows the BVA search space for deriving ClassA
W2 directed and undirected BT networks, respectively.
A noteworthy pattern is the reverse nature of obtained
accuracies at directed BT networks where the accuracy
increases as the connection weight increases, as oppose to
the undirected BT networks. Different days’ combinations
exhibit similar accuracy patterns, however from both
figures it is noticeable that having five days of BT data
(D5) rarely outperforms the fewer day’s combinations. In
contrary, one day of data (D1) is more commonly the best

Table 5 Optimal parameter sets for achieving highest accuracy per class

W1 W2 W3

Class Parameters Acc #BT Parameters Acc #BT Parameters Acc #BT

A DIR W:0.40;D:2;S:12 .61 5050 (91%) W:0.54;D:2;S:4 .58 4550 (48%) W:0.19;D:2;S:8 .60 1972 (48%)

A UND W:0.40;D:2;S:9 .82 4110 (74%) W:0.20;D:5;S:3 .65 713 (7%) W:0.42;D:2;S:7 .74 1375 (33%)

B DIR W:0.11;D:5;S:9 .59 1734 (16%) W:0.54;D:5;S:8 .64 2032 (67%) W:0.18;D:2;S:7 .57 1409 (42%)

B UND W:0.05;D:2;S:11 .80 9170 (82%) W:0.35;D:5;S:8 .78 2032 (67%) W:0.11;D:2;S:0 .79 2897 (87%)

C DIR W:0.19;D:2;S:14 .61 8319 (80%) W:0.24;D:5;S:11 .59 1432 (96%) W:0.33;D:3;S:9 .49 157 (50%)

C UND W:0.16;D:2;S:10 .85 7115 (69%) W:0.37;D:2;S:9 .70 615 (41%) W:0.45;D:3;S:9 .65 157 (50%)

D DIR W:0.39;D:5;S:7 .60 1412 (79%) W:0.21;D:2;S:9 .50 1783 (98%) W:0.59;D:3;S:8 .64 93 (79%)

D UND W:0.42;D:5;S:8 .78 1773 (99%) W:0.47;D:2;S:10 .63 1795 (99%) W:0.59;D:3;S:8 .76 93 (79%)

E DIR W:0.11;D:5;S:8 .59 1734 (95%) W:0.12;D:2;S:10 .47 713 (94%) W:0.24;D:3;S:8 .66 499 (85%)

E UND W:0.07;D:5;S:10 .83 1882 (100%) W:0.12;D:2;S:10 .70 713 (94%) W:0.24;D:3; S:8 .85 499 (85%)



Pers Ubiquit Comput

Fig. 5 BVA algorithm’s parameter optimization search space in three distinct scenarios of ClassA

local optimum solution. The rightmost figure displays the
obtained accuracies for all waves and connection type

combinations. Even though the data is collected at different
waves (different time periods of the year), there are
visible similarities in the BT network accuracies. This is
particularly visible by comparing the obtained accuracies at
W2 and W3.

Lastly, the BVA optimal scenarios (OS) based on Table
5, are compared with the so-called baseline scenarios (BS).
In the BS, the BT networks are inferred without parameter
optimization, essentially BVA is not applied: all possible
edges (weight threshold = 0) and BT observations
(window size : day = 5) are used. Compared with the
BS, the OS shows higher accuracy at all data waves. At the
W1 directed network the BS achieves an accuracy of 0.50
compared with 0.61 for the OS, in the case of undirected
networks the difference is 0.81 for BS and 0.84 for OS. The
W2’s directed BS has accuracy of 0.52, as opposed to 0.58
for OS. The W2 undirected BT network is the only case
in which the accuracy is not improved, both scenarios have
an equivalent accuracy of 0.81. Finally, the W3 directed BS
derives accuracy of 0.54, as opposite to 0.60 for OS, the
undirected BT networks with minimal improvement (BS:
0.80, OS: 0.81).

7 Social network analysis

Accuracy is a good metric for balanced binary classification
problems, as in the BVA algorithm, where it signals
the presence of a connection in a network. However,
accuracy doesn’t give a complete picture for the structural
differences that might exist among the compared BT and
GT networks. For example, even a objectively reliable
optimal BT network (e.g., with accuracy > 80%),
might lack a good amount of connections of an important

(influential) node. An elaborate analysis on the structural
differences between the networks is important when, for
instance, researchers want to leverage the network structure
to test their scientific hypotheses. To illustrate, one goal
of the MyMovez project is to design social network health
interventions in the school classes. In this use case, it is
important to identify participants that influence the behavior
of the peers the most, and select them as influence agents
to spread the intervention in the social network. One way
to find influential nodes is to observe their degrees of
centrality, i.e., look at their connections with others. This
is an example when non-detected connections might lead
to less optimal set of influence agents being selected, if
one is about to rely on the BT networks for testing their
hypotheses.

With the aforementioned points considered, this section
will delve into the BT and GT social network topology,
and report the outcomes of their comparison. Given the
magnitude of the presented results in Section 6, the
performed social network analysis focused on a subset of the
obtained optimal BT networks. The optimal BT networks
(n = 10) inferred from MyMovez W1 data and their GT
counterparts are considered for the presented social network
analysis (SNA). The BVA inferred the BT networks with
accuracies ranging from 0.59 to 0.61 for the directed, and
from 0.80 to 0.85 for the undirected networks (see Table 5).

The BT and GT social networks were quantified using
a set of network metrics, namely density, gender-based
assortativity, (in-)degree centralization, closeness central-
ization, and node degree centrality. All these measures were
calculated on unweighted BT and GT graphs.

Density represents the ratio between the number of
edges and the number of all possible edges in a network.
More connections among the nodes implies higher network
density, with the value of 1 indicating a fully connected
network.
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Assortative mixing in networks gives a measure of
the tendency of nodes to be connected to other nodes
that are like (or unlike) them in some way [30]. This
analysis considers assortative mixing by gender, motivated
by previous research that showed that adolescents tend to
select friends who are of the same gender [35–37]. The
assortativaty coefficient ranges between −1 and 1 , where
1 indicates perfect assortative mixing (every connection is
between nodes of same gender), and −1 indicates perfect
disassortativness (every connection is between nodes of
different gender). The coefficient is calculated according
to the formulas presented in [30] and depends on the joint
probability distribution (mixing matrix) of the specified
attribute (gender in this case).

Centralization is a network-level measure that gives
indication of the standard deviation of individual nodes’
centrality scores. This is different from node centrality
measurements, which are based on the individual node in
a network. Both (in-)degree and closeness centralization
were considered for this SNA. The centralization measures
in this analysis are calculated based on the distribution
of individual node’s centrality as explained in Freeman’s
work on group centrality [31] with ranges between 0 and
1. Centralization value of 1, implies perfectly centralized
network, e.g., star network topology. A clique where every
node is connected to every other node is clearly not
centralized; on the other hand, the star topology, in which
only one node v is connected to all others and all other
vertices are only connected to v is a completely centralized
graph. High centralization values indicate the presence of
pronounced subgroup of nodes with significantly higher
individual centrality values compared with the other nodes
in the network. Therefore, high centralization can be
an indicator of influential (role-model) nodes within the
network, and a good measure of the structure of a social
network.

Node degree centrality is an individual-level measure
indicating the number of ties a node has in the network.
This measure was used in addition to the centralization
metrics from above, in order to get additional information
on network structure, this time from individual-level or ego
networks perspective.

The results of the conducted SNA are presented below.
Table 6 gives a comparison of the network properties
statistics obtained for the optimal BT networks of W1
data and their GT network counterparts. The results are
presented in the form GT/BT statistics. All 5 classes
and both directed and undirected networks are considered.
Comparing BT and GT network density, one can conclude
that the optimal inferred BT networks tend to overestimate
the number of edges present in the GT networks. In most
cases, the BT networks tend to be denser compared with
their GT counterparts, commonly with differences in range

of 10–20%. The density among the BT networks vary
between 0.40 and 0.80, and similarly the density among
the GT networks vary between 0.45 and 0.85. Certain
overestimation of the connections is present at both directed
and undirected networks. A visual example of this density
difference in Fig. 6 shows the GT and BT networks of
ClassA (both directed and undirected), where the blue lines
in the BT networks (on the right side) illustrate these
supplementary edges, that are not found at the GT networks.
Table 6 clearly shows a sign of positive gender-based
assortativity among the GT networks, especially at ClassA
and ClassB. Here, the coefficients are relatively high at both
directed networks (0.37 and 0.46) and undirected networks
(0.25 and 0.31). On the other hand, the BT networks are not
able to capture the assortativity phenomenon, on contrary
they frequently show disassortativity (in 7 out of 10 cases).
This implies that the nodes might be clustered in a different
manner at the GT and BT graphs.

Table 6 gives the evidence that the centralization effect
of both in-degree and closeness, tends to be higher
at GT networks compared with BT networks. In some
cases, there is a significant difference, e.g., at ClassB
undirected GT networks the in-degree and closeness
centralization are 0.28 and 0.38 higher, compared with the
respective BT networks. It is worth mentioning that the in-
degree centralization difference, is more expressed at the
undirected networks, while directed networks tend to be
more equally centralized. The trends of higher centralization
at GT networks (compared with BT networks) are followed
by all cases, except at ClassD in-degree centralization
values. Comparing the centralization values shows that the
BT networks could potentially have difficulty capturing
subgroups of influential nodes, that can be important
for some application scenarios. To further delve into the
question of structural difference, the SNA is finalized
exploring node-level centrality properties. Looking at the
individual-level or ego perspective can give details on where
those differences occur. For simplicity, this analysis focuses
on ClassA W1 data, but the results of the other classes are
available on request.

Figure 7 visualizes the network representations of ClassA
undirected BT and GT network, and a degree distribution
comparison plot, based on the individual-level node
centrality. Looking at ego-network perspective can show
where exactly the network differences occur. Table 6 shows
that there is a big difference at the degree centralization
values (GT 0.36 compared with the BT network 0.20),
even though they have the same density value of 0.68.
The node sizes in the visualized graphs depend on their
degree centrality, with higher degree centrality resulting in
bigger nodes. Visually, it can be confirmed that the GT
network (colored green) is highly centralized with respect
to degree, compared with the corresponding BT network
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Table 6 Four global graph properties (column 3 to 6) are compared among GT and BT networks (W1 data), their values represented as GT / BT
in the corresponding columns

Class Total nodes (% female) Density Assortativity gender-based Centralization (in-)degree Centralization closeness

A DIR 15 (53%) 0.50/0.63 0.37/0.15 0.23/0.24 0.38/0.15

A UND 15 (53%) 0.68/0.68 0.25/0.08 0.36/0.20 0.50/0.24

B DIR 20 (35%) 0.45/0.67 0.46/0.03 0.25/0.23 0.38/0.15

B UND 20 (35%) 0.60/0.80 0.31/-0.04 0.44/0.16 0.59/0.21

C DIR 19 (26%) 0.56/0.74 0.12/-0.08 0.23/0.15 0.32/0.10

C UND 19 (26%) 0.77/0.77 0.02/-0.07 0.26/0.13 0.38/0.15

D DIR 13 (46%) 0.46/0.48 0.20/-0.08 0.31/0.28 0.41/0.18

D UND 13 (46%) 0.64/0.40 0.12/-0.10 0.42/0.32 0.56/0.39

E DIR 13 (69%) 0.70/0.68 0.17/-0.16 0.15/0.26 0.24/0.18

E UND 13 (69%) 0.85/0.73 0.03/-0.13 0.18/0.22 0.27/0.27

Fig. 6 Structural network difference between ClassA W1 GT and optimal BT networks. The upper image shows the comparison in case of directed
networks, followed by the undirected networks comparison below
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Fig. 7 Degree distribution comparison of ClassA GT (green) and BT (blue) undirected networks, followed by the topologies of the GT and BT
networks. The networks are visualized with different node sizes depending on their degree centrality values, bigger node size implies higher
centrality

(colored blue). There are few nodes, namely 983, 974, and
973 in the GT network, that have much higher centralities
compared with the rest of their peers. This is not the case
at the BT network, where the centralities are more equally
distributed among the members. It is important to mention
that different nodes have the highest centralities in their
respective networks. At the GT network, nodes 973, 974,
and 983 lead with degree centrality of 14, 13, and 12,
respectively. The same nodes are among the one with lowest
degree centrality if one is to look at the BT network. Here
the pairs (node, centrality) look like: (973, 9), (974, 10), and
(983, 8). The nodes with the highest degree centrality are
963, 967, and 985 all with centrality of 12. Therefore, it is
important to note that even when the BVA derives relatively
high accuracy values (in this case 0.82), there can be
significant structural differences among the nodes and the
derived connections. Lastly, the example of ClassA directed
networks where the in-degree centralization values of GT
and BT are similar (0.23/0.24) reveals a similar conclusion.
The most central nodes of the GT network are (983, 10) and
(974, 9), while at the BT network the most central is (967,
12). Node 983, the highest centrality valued node at the
GT network, is on the lower side in the corresponding BT
network with centrality value of 8. Besides degree centrality,
eigenvector centrality was additionally considered as part of
the SNA. However, it yielded to similar conclusions as the
nodes that had the highest eigencentrality were the ones that
also have dominated with the highest (in-)degree centrality
roles.

8 BVA generalizability: application
to external data sets

The methodology is designed to be reproducible to other
BT data sets scenarios. This section explores the gener-
alizability of the BVA, by running the algorithm on two

independent data sets collected in other research experi-
ments.

8.1 SocialBlueConn data set

This data set contains BT proximity data collected by an
Android app called SocialBlueConn [29]. The data was
obtained from CRAWDAD [45], an open wireless data
archive for mobile and pervasive computing. In the Social-
BlueConn experiment, the BT observations were gathered
in a single data collection wave, from 15 university stu-
dents during 7 consecutive working days (from January 28,
2014, to February 5, 2014). In addition, the data set includes
social profiles, i.e., Facebook friends of the participants
that were used in this analysis to derive a GT network.

In [29], BT scans are performed on every 3 min, from
12:23 until 17:58, resulting with total 108 scan periods as
shown in Fig. 8. The significant drop at the last 20 scans is
due to the after-school time. Noticeable, the collected BT
observations are more evenly distributed among the scan
periods (M = 202.96, SD = 84.33) compared with the
MyMovez data set, as data was being collected throughout
the school day. The same applies for the number of BT
observations per participant (M = 1461.33, SD = 217.35).
The Facebook friendship data is a 15×15 binary matrix,
where 1 indicates a friendship between two nodes.

The BVA algorithm was run on the SocialBlueConn
data set with some modifications on the input parameter
ranges: the connection weight was limited to 0.20 and
scan period in range [1, 97]. The connection weight

range was limited for similar reason as already mentioned
in Section 5, however with noticeably lower upper-
bound. Higher weight values resulted in non-representative
networks rapidly compared with MyMovez data set,
possibly due to the more equal distribution of collected
BT data among the participants, which produced less
variety (and lower values) among the weight values on
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Fig. 8 Scan periods distribution—SocialBlueConn data set. The x-axis depicts a particular scan period, while the y-axis gives the corresponding
number of collected BT observations. The data is summarized along the 7 collection days

their connections. The GT networks were generated with
connection between two nodes in case there is a Facebook
friendship between two participants.

The ranges of obtained accuracies vary from approxi-
mately 42 to 76% at directed BT networks, and 71 to 88%
at undirected BT networks. This is an indicator of the BVA
generalizability, as the accuracy ranges follow similar pat-
terns to the results of MyMovez data set. As a reminder, the
accuracies among the MyMovez classes varied between 33
and 66% for directed, and 51 and 85% for undirected net-
works. The slightly wider accuracy range in the MyMovez
data can be expected, given the size of this data set (five
classes and three data waves). In total, 37 distinct net-
work representations were generated at both directed and
undirected networks, and high isomorphism is once again
showed. The potential accuracy loss (as result of a partic-
ular network selection) is relatively high, at both directed
and undirected BT networks, with 33% and 34% respec-
tively. The optimal networks are derived from the following
input parameter combination: connection weight = 0.12,
window size(day) = 7, window size(scan period) =
19, for both the optimal directed and undirected BT net-
work. The exact achieved optimal accuracy were 0.76 and
0.88, for directed and undirected BT networks, respectively.
Similar to the reported MyMovez outcomes, having a cer-
tain connection weight threshold was proven useful. In
this case though, the optimal BT networks were generated
using the maximal number of days (7 in this data set).
Despite the maximum number of days, only 20% of BT
observations were used to generate the optimal networks,
since only 19 scans were used (out of 108). Comparable
with the MyMovez data set, the undirected BT networks
showed on average higher accuracy compared with the
directed BT networks.

8.2 Copenhagen network study data set

The Copenhagen Network Study (CNS) [48] was conducted
among university students; however, unlike the MyMovez
and SocialBlueConn data sets, it offers a different
magnitude of data, with over 700 university students
participating in the experiment. Each participant was given
a dedicated smartphone (Google Nexus 4) with an app
installed to collect the multi-modal data. The data was
collected during a period of four consecutive weeks in 28
days. BT scans were performed every 5 min throughout the
whole day, resulting in total 288 scans per day. The GT data
is obtained based on the Facebook friendships that were
recorded at the end of the experiment.

For this analysis, the data collected in the first 7 days
(starting from Sunday) was used. In total, 706 users were
considered in the analysis, after confirming their presence
in both the BT and GT data sets. Figure 9 gives an overview
of the conducted BT data quality analysis. The upper image
visualizes the BT observations obtained throughout a single
working day (in this case Monday). The collected BT data
follows an expected pattern of a typical working day: more
peer to peer interaction occurring between 08:00 and 17:00,
during which university students spend more time together.
Similar patterns were observed at the remaining working
days, while the weekends are peaking on Saturday evenings.
The lower left figure clearly demonstrates that more data
is obtained during the working days (Monday–Friday). The
data is collected starting on Sunday (the first bar plot)
and ends on the 28th day (Saturday—the last bar plot of
the figure). Given the size of the experiment, much higher
amount of BT data observations are collected as compared
with the previous data sets, the average being 195,510 BT
observations (s = 35441) per day. Finally, the lower right
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Fig. 9 BT data quality statistics of the Copenhagen Network Study.
The upper figure visualizes the data collection flow during a particular
working day (Monday). On the lower left figure, the distribution of BT

observations over the 28 data collection days is displayed. Finally, the
lower right figure gives an indication on data collection quality among
participants, showing the percentage of successful scan periods

figure gives an overview of the BT data collection quality
among the participants. As can be observed, majority of
users had successfully scanned over time, with the median
being 0.81.

The BVA algorithm was run with window size(day)

in range [D1, D7], with all possible combinations
similarly to the MyMovez data set. All scans dur-
ing a particular day were taken into consideration,
therefore window size(scans) : [S1, S288]. The
weight threshold was limited to 0.5, with a step size
of 0.05, giving total 20 combinations. Both directed and
undirected social networks were inferred.

The CNS data set has one big difference, when compared
with the previous two use cases. It represents highly
dynamic network, where nodes are not as interconnected

and part of close-knit community like a school class. This
becomes obvious when comparing the densities of the
obtained GT graphs, between MyMovez and the current
data set. For example, the average class density in the
MyMovez W1 GT networks was 0.62 (based on Table 6),
compared with the GT network density of 0.02 obtained
from the CNS data. The low number of reported peer
connections is expected given the large-scale university-
level participation. However, this indicates that accuracy is
no longer a representative validation metric, as the CNS
use case no longer represents edge inference classification
problem with (nearly) balanced classes. On contrary, the
number of non-edges is significantly larger than the number
of present-edges between peers in the network. Therefore, a
new validation metric for the BVA algorithm that deals with
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imbalanced classes scenarios is introduced: the Matthews
Correlation Coefficient (mcc). The mcc score gives a
more reliable statistical rate in case of imbalanced binary
classification tasks, compared with using, for example, F1-
score as a popular tool in unbalanced classes scenarios [49].
MCC outcome is more realistic as its statistical rate gives a
high score only if the prediction obtains good results in all
the four confusion matrix categories (TP, FN, TN, and FP),
proportional to both sizes of positive and negative elements
of the data set. MCC is defined as follows:

MCC= TP ∗ TN − FP ∗ FN√
(TP+FP) ∗ (TP+FN) ∗ (TN+FP) ∗ (TN+FN)

(4)

with the score ranging in the interval [−1, 1], where -1 and
+1 indicate the case of perfect misclassification and perfect
classification, and the value of 0 is the equivalent of coin
tossing (or random) classifier.

The presented results cannot be directly compared with
the ones from the previous two use cases, as they are eval-
uated with different statistics, and as essentially the CNS
data set is of different nature. The obtained mcc ranges
for undirected BT networks vary in between [0.24, 0.47],
while [0.14, 0.36] is the range at the inferred directed BT
networks. Similarly to the other scenarios, there are many
possible distinct network representations and high isomor-
phism among the inferred networks. Among the directed
BT networks, there are 23 distinct network representa-
tions, and 24 for the undirected BT networks. The optimal
inferred BT networks are obtained with the following
input parameter combinations. For the optimal undirected
BT network (with mcc = 0.47), the parameter combina-
tion connection weight = 0.15 , window size(day) =
4, window size(scan period) = 184, and
connection weight = 0.5, window size(day) = 3,
window size(scan period) = 1 for the optimal directed
BT network. Once again, the parameter optimization
process lead to improvements in the quality of the gen-
erated networks. Having a certain threshold on the
connection weight lead to creating the optimal networks,
in addition they are generated with less than 7 days, show-
ing that the BT data collection of 3 and 4 days respectively
was enough to obtain optimal inferred networks.

9 Discussion

This paper presents a methodology for inferring and
validating social networks from noisy BT data. Two
main building blocks of the methodology are the BVA
algorithm and the SNA. The approach was first tested on
a BT data collected among classmates in a school setting.
Evidently, the complex BVA search space resulted in many

possibilities of representing a social network during the
inferring process. There was a high level of isomorphism
among the potential BT networks. Therefore, finding the
network that best represents the true social connections was
based on a set of criteria. In this paper, the optimal inferred
networks are those who achieve the highest accuracy (being
compared with a GT network) and are obtained from fewer
BT observations, and/or fewer days of data collection.
The results showed that the accuracies of the optimal BT
networks vary largely (between 48 and 85%) among the
five MyMovez classes. As anticipated, the accuracy is
dependent on the quality of the data collection and the
network connection type. Undirected networks were derived
with higher accuracy, compared with directed networks.

The connection weight was used in order to question
the significance of the BT observations as representatives
of a real-life social connection. The optimal parameter sets
derived from the BVA algorithm (see Table 5) implied that
removing a certain extent of edges raises the accuracy of
the BT networks. Setting a particular connection weight

threshold lowers the number of false positives in the
networks. Another evident outcome is the large diversity
of optimal connection weight values. This means that
the parameter has to be calculated on a per-case bases, as
the level of noisiness of the data is different per scenario.
The window size parameter revealed that having more BT
observations does not necessarily result in more accurate
BT networks. On the contrary, the results indicate that
two days of BT data collection is frequently a sufficient
extent of time to derive BT networks with optimal accuracy.
Proper time granularity can be essential for both researchers
and participants of an experiment. For the researchers,
shorter data collection time makes the system less error
prone and eases the data analysis process. The participants’
experience is enhanced, as smartphone battery is saved and
they spend less time for the experiment; therefore, the risk
of dropout can be significantly reduced. Finally, the effect
of a particular connection type shows that undirected
BT networks are much closer to their GT counterparts,
being approximately 20% more accurate compared with
the directed BT networks. However, one can argue that
these outcomes might be biased by the nature of the
social networks, as undirected networks have higher density,
therefore reducing the chance for detecting false positives.
Therefore, it is important for researchers to consider the
potential biases based on their design decisions, and aim for
selecting the right network representation for the particular
use case of interest.

The second part of the methodology considered SNA
for comparing the structural properties of the BT and
GT networks. This analysis showed that while accuracy
is an appropriate metric, there are considerable structural
differences between the BT and GT networks that are
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hard to be quantified via this classification measure.
In conclusion, the inferred BT networks were unable
to reproduce some visible GT network characteristics,
like gender-based assortativity or degree centralization.
Moreover, the subsequent individual-level network analysis
showed that different nodes are considered important
(influential) at the GT and BT networks. The degree
centrality measures ranked different nodes with the highest
values at the GT and the BT networks. Nodes that were
considered most central at the GT network, were not
rarely at the lower side of centrality at the respective
BT networks. To conclude, the SNA delivered several
meaningful precautions to be considered when using BT
networks for testing scientific hypotheses.

To have a reproducible methodology was one of the main
goals of this research. Ultimately, the described procedure
can be reapplied by developers of similar BT-based data
collection systems. In order to test the generalizability of
the proposed approach, the BVA was run on two external
BT proximity data sets. The first data set, SocialBlueConn,
was collected from 15 students’ smartphones in a university
setting. Applying the methodology on this data set resulted
in obtaining comparable outcomes in terms of accuracy
ranges and reliability of the networks. For instance,
similarly to the MyMovez data set, there was a high level
of isomorphism and potential accuracy loss among the BT
networks. Excluding a certain number of potential edges
was once again beneficial. Second, the BVA algorithm was
run on a data set with slightly different characteristics.
The Copenhagen Network Study data set was collected
among more than 700 university student participants with
a much higher BT data granularity. This network differs
from the previous use cases as it does not represent
close-knit network, and the edge inference evaluation was
updated by including a new metrics, mcc for dealing with
imbalanced classes. The results once again showed high
isomomorphism among the inferred networks, with the
highest mcc values obtained being 0.47 for the optimal
undirected BT networks, and 0.36 for the optimal directed
BT network. More importantly, this use case was useful for
expanding the methodology with capabilities to report on
imbalanced classification problems.

The presented study also has some limitations. First is
the question of missing data. Field experiments are likely to
be error-prone and flawless data collection is not expected.
One should consider handling missing data, for example, by
using machine learning for data imputation, or applying an
alternative pervasive technology (in addition to Bluetooth).
Furthermore, even though for this research the traditional
survey methods are considered as ground truth, they can
be erring as well. Human-made mistakes in answering

questionnaires can result in erroneous social network
graphs. Moreover, the notions of social influence can be
larger than only studying friend-based nominations, as
considered in this research. For example by social norms: a
person can already be influenced by other people that he/she
did not nominate, but are in near proximity. An inevitable
limitation comes from the nature of the BT technology as
already explained in this paper. Using the rich ubiquitous
technology ecosystem with the most recent technologies
like wearables or BLE-based systems [14] can additionally
increase the reliability of inferring network representations
from pervasive data. In addition, combining BT data with
other data sources like geospacial information or phone
contacts can result in more accurate real-life modeling.
Another limitation is the lack of data sets that would fit the
requirements of the proposed methodology. This is related
to several more general observations. First, there is the
scarcity of open data in the research community [53, 54].
Second, as already explained in the introduction of this
study, previous research rarely went through the process of
validating their BT networks; therefore, there is an evident
lack of GT network representations. This was confirmed
during the process of searching for external data sets for
showing the generalizability of the methodology. While
CRAWDAD or SNAP [47] are data repositories that offer an
impressive number of wireless (and BT) data sets, they were
missing GT data counterparts, and consequently were not
suitable candidates for validating the BVA algorithm and did
not fit the methodology requirements. In the current study,
the methodology has been applied to three independent data
sets. Although this does not prove generic applicability, it
illustrates that the methodology can be applied to different
data sets. When more suitable data sets become available,
the generalizability of the methodology can be investigated
more thoroughly.

To conclude, the obtained results emphasize the need for
making the right design decisions and a rigorous methodol-
ogy before deriving BT-based social network graphs. Being
able to use reliable pervasive-based technologies like BT for
deriving real-life social networks can reduce the overhead of
the traditional data collection methods like questionnaires or
surveys. Humans are surrounded by technology; therefore,
technology-based data collection can seem more natural,
compared with the traditional ways of gathering data. It
is important to realize that pervasive systems will always
result in an approximation of real-life social networks, alike
the questionnaire-based social network graphs. More evalu-
ative studies on the reliability of using similar technologies
can contribute to a better understanding of the proposed sys-
tems, and a swift replacement of the traditional methods for
deriving real-life social networks.
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