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RESUMO

FERREIRA, Eric Batista. Alguns tópicos em Análise de Procrustes
aplicada à Sensometria. Lavras: UFLA, 2007. 131 p. (Tese - Doutorado
em Estatística e Experimentação Agropecuária)*

Os problemas de Procrustes são estudados desde a segunda metade
do século XX, quando o primeiro problema foi proposto. Desde então a
Análise de Procrustes foi muito estudada e desenvolvida. Contudo ainda

persistem lacunas como o estudo da estimação de parcelas perdidas e a
falta de ferramentas de Inferência Estatística. O presente trabalho estuda
a influência dos chutes iniciais na estimação de parcelas em problemas or
dinários de Procrustes, relata e propõe novos aspectos em algoritmos de
estimação em problemas generalizados de Procrustes e descreve uma pro
posta de método decisório para permitir a Inferência em tal análise. Esse
método é ilustrado com três experimentos reais e dois estudos de simu
lação de dados. Os chutes iniciais mostram interferência no resultado dos
ajustes e o método decisório se mostrou coerente, estável e eficiente na de
tecção de produtos semelhantes, associando uma fase liberal com uma fase
conservativa.

Comitê orientador: Marcelo Silva de Oliveira - UFLA (orientador); Daniel Furtado
Ferreira (UFLA) e John Clifford Gower (Open University).



ABSTRACT

FERREIRA, Eric Batista. Some topics in Procrustes analysis appiied
to Sensometrics. Lavras: UFLA, 2007. 131 p. (Thesis - Postgraduation
Program in Statistics and Agricultura! Experimentation)*

Procrustes problems have been studied since the second half of the
20th century, when the first problem was stated. Since then Procrustes
analysis has been developed. However, some gaps still hold mainly in esti-
mating missing values and the lack of tools for statistical inference. This
work analises the influence of putative values in the estimation of missing
cells in ordinary Procrustes problems, reports and suggest new aspects for
estimation algorithms in generalised Procrustes analysis and describes a de-
cision method to allow inference features. Such method is illustrated with

three practical experiments and two simulation studies. Inadequate puta
tive values have shown to ability to lead to local minima and the decision
method performed coherently, stably and efficiently in detecting similar
products, associating a liberal and a conservative stage.

Guidance committee: MarceloSilvade Oliveira- UFLA (supervisor); Daniel Furtado
Ferreira (UFLA) and John Clifford Gower (Open University).
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1 INTRODUCTION

Hurley & Cattell (1962) did a homage to Procrustes, personage of

Greek mythology, when they used his name, for the first time, to refer to

a minimization problem that intended to transform a given matrix into

another. Depending on how that minimization problem is set it receives a

particular name, setting up a particular Procrustes problem.

Besides the importance on itself, i.e., on solving how two (set of) ma

trices best fit themselves only using some allowed transformations, the Pro

crustes problems have found a crucial role in sensorial sciences. Williams

& Langron (1984), for instance, stated a sensorial methodology called Free

Choice Profiling (FCP), only possible after the progress of the Procrustes

analysis. On the other hand, the development of FCP certainly motivated

the Procrustes problems to keep in progress (Figure 1). Free Choice Pro

filing allow each assessor to score his/her own set of attribute, in his/her

own scale. That is what the Procrustes problems are ali about, comparing

configurations apart from bias of scaling, positioning or orientation.

So many others áreas of science have used and have been influenced

by Procrustes apart from sensorial sciences. Particularly, Statistical Shape

Analysis uses Procrustes rotation from so long ago (Ian Dryden) and is the

another important application of Procrustes analysis. However, it can be

found a lot of others áreas where Procrustes have been used, like Paleon-

tology (Rodrigues & Santos, 2004), Medicine (Rangarajan, 2003), Ecology



(Moraes, 2004), Molecular genetics (Mironov et ai., 2004), automotive in-

dustry (Dairou et ai., 2004) and Photogrammetry (Akca, 2003).

Meaning of the term Procrustes is shown in Table 1.

First

Procrostes

Problem

< > Sensorial analysis

M t t í

Procrustes anatvsis

í
Pateonlhology
Medicine

Ecology
Molecular genetics
Automotive industry
Photogrametn'

FIGURE 1: Origin and progress of Procrustes analysis and its main re-
lated áreas.

The joint development of Procrustes and sensorial analysis is justi-

fied by the need of correctly modeHng and comparing the subjectiveness of

the human perceptions and Ukes. In manufactures, for instance, it is more

than ever worth to measure that subjectiveness and take it into account

when producing for a specific share of the market.

Due to their close relationship, some topics on Procrustes analy

sis are discussed here merged by sensorial issues and sensorial and shape

analysis examples through ali the text.



TABLE 1: Meaning of the term Procrustes along some áreas of knowledge.

Área

Greek Mythology

Mathematics

Sociology/Economics

Statistics

Shape analysis

Sensometrics

Relation with Procrustes

Presents the myth of Procrustes, evil personage
that adjusted his guests to his "magical" bed. He
was murdered in his own bed.

Beginning of Procrustes Problems. Use of the
term to refer to the problem of fitting a matrix
to another.

Procrustes is used referring to autocratic/dicta-
torial/unflexible systems, rules, policies, govern-
ments or regimes.
As a multivariate descriptive tool is frequently
used, mainly after Generalised Procrustes Anal
ysis (Gower, 1975). This work proposes some
stochastic point of view.
Procrustes Analysis is largely used in Statisti-
cal Shape Analysis (Dryden & Mardia, 1998),
fitting landmarks.
Impelled by the developments of Procrustes
problems, arises the Free Choice Profiling
(Williams & Langron, 1984). Sensometrics
arises as a multidisciplinar área intending to
quantify and understand stimuli perceived by
humans.



1.1 History of Procrustes

Procrustes is a Greek Mythology personage. Son of Poseidon, he

had a special bed in his chamber that would have the power to adjust

itself to anyone laid on it. Procrustes use to offer a great banket to the

peregrines that passed by his chamber, full of food and wine. After the

dinner, he offered a restful night on a magical bed. When they had no way

out he announced that they should exactly fit his, what never happened.

Just in case, he had two beds to ensure anyone would never fit it. In order

to fit the guest to the bed, Procrustes stretched or racked his legs and

arms. However, Procrustes had a tragic fait. Theseus, in his way to claim

Athens reign, killed him on his own bed, as one of his six works. Hurley &

Cattell (1962) did homage to that Greek Mythology personage stating the

Procrustes problem, a mathematical fitting problem, for the first time.

Procrustes myth seems to denounce one (or several) human blem-

ish(es): the intolerance (besides rigidity and cruelty). It denounces a dark

side of human beings that tends to impose its will at any cost, in spite of

chopping and stretching.

1.2 Definitions and notation

In this section some basic definitions are presented and the notation

adopted along the text is stated.

Reading the following definitions, consider that, mainly in gener

alised Procrustes problems, some definitions use index i to refer to several

matrix (e.g. Xi, i = 1,..., k).

Moreover, along the text, the sign ' denotes transposed matrices

(e.g. X' is X transposed); tr stands for the trace ofa matrix (e.g. tr(A) =
trace{A))\ and the sign * denotes the element-wise product of two matrices.



X: a given matrix (nxp) of raw scores, distances or transformed

data. It can be seen as a configuration, i.e., let each row of X represent the

coordinates of a point. So, the n points can be joint by an imaginary line

forming a configuration. Because of that correspondence between a matrix

and a polygon, there is meaning saying "rotation of a matrix", "translation

of a matrix", and so on. The next example shows a configuration on a plan.

/ 1 4 \
2 3

-3 -1

-3 51 J

T: a transformation matrix (pxp).1 It is unknown (i.e., has to be

estimated) and promotes a general transformation in X when post multiply-

ing it. The illustration shows a given configuration X (left hand side) and

a transformed one XT (right hand side). Note that the general transfor

mation does not necessarily respect the relative distances between vértices,

i.e., it must not be called a rigid body transformation.

lT is not necessarily square. Since the number of columns p may vary along the
matrices X, it will be denoted by p*, so T turns out a p< xpj/ matrix.



Q: an orthogonal matrix (pxp). One matrix Q is considered orthog

onal when it is square and both column orthonormal {QQ' = I) and row

orthonormal {Q'Q = J). In this case Q'1 = Q'. It promotes a rigid body

rotation in X when post multiplying it. The illustration shows a given

configuration X (left hand side) and a rotated one XQ (right hand side).

It is worth noting that terminology usually is a source of confusion

in the literature concerning transformations. Here, I transcribe such a

reflection about that found in Gower & Dijksterhuis (2004):

"There is a considerable confusion in the literature betweenthe terms

orthogonal and orthonormal. The preftx ortho refers to the inner prod-

uct of two vectors being zero (geometrically they represent perpendicular

directions) and normal refers to vectors of length one. Thus an orthonor

mal matrix P (p\ XP2) satisfies P'P = /. More precisely P, so defined,

is column-orthonormal; we may also have row orthonormality, defined by

PP' = J. By an orthogonal matrix Q, we mean a square matrix, in so that

QQ' = Q'Q = I. Actually for square matrices, row orthonormality implies

column orthonormality and vice versa; thus a pxpn orthonormal matrix

is very common in the literature but it is a little misleading because from
the etymological point of view we would understand only the diagonality of

QQ' and Q'Q and no the unit-length. However, orthogonal matrices are

of such importance that some special terminology is needed to distinguish



them from non-square orthonormal matrices. In the literature, what we

call orthonormal matrices are sometimes described as orthogonal, which is

etymologically correct but a source of confusion. Another source of confu

sion in the literature is that quite general matrices T may be referred to

as representing rotations whereas, strictly speaking, rotation only refers to

orthogonal matrices and then not ali orthogonal matrices."

P: a column orthonormal matrix (pxp)2, i.e., PP' = /. It promotes

a reflection in X when post multiplying it. The illustration shows a given

configuration X (left hand side) and a reflected one XP (right hand side).

s: a scaling factor or central dilation (scalar). Usually associate with

a matrix X, it stretches or shrinks the configuration X represents. The

illustration shows a given configuration X (left hand side) and a shrunk

one sX (right hand side).

2P is not necessarily square either. When Xi isn xp<, then P ispixpv but constrained
to PP' = /



u: a vector containing the average of the X columns, i.e., the cen-

troid coordinates of the X configuration. In the translation step, lu' rep-

resents the matrix to be subtracted from X to center it.

1: a vector of ones and of the suitable length. The illustration shows

a given configurationX (left hand side) and a centered one X —lu' (right

hand side).

1.3 Review of Procrustes Problems

According to Gower & Dijksterhuis (2004), there are three main

elements in Procrustes history, the unfortunate traveler (matrix Xi), the

bed (matrix X2) and the stretch or the rack to turn him of the same size

of the bed (matrix T). The simplest statement of the Procrustes problem

8



seeks for a matrix T to minimize

\\XiT-X2%

where T is a matrix with dimensionality p\ x p2\ X\ and X2 are given

matrices with dimensionality n x pi and (n x P2), respectively; and || • ||

denotes the Euclidean/Frobenius norm, that is ||A|| = trace{A'A). In

sensorial analysis, those quantities can be understood as: n, number of

evaluated objets; p\, number of variables used by assessor 1 to evaluate

such objects; P2, number of variables used by assessor 2. Note that, since

T is a general matrix, if X\ is invertible, there is a matrix T = Xf1A*2
which is a ready solution for the problem, i.e., there is T such that X\

fits exactly X2. But, in order to T equals X^X2, it is necessary X\ to
be invertible, that is, X must be a square matrix and must have non-zero

determinant. In general, X\ neither is square nor is guaranteed to have

non-zero determinant. So, the minimization problem proceeds.

x{1)

x(1)L xnl

.(D i r
'1P1

z(1) t 1

*11 1P2

tPlP2 J

rT(2)

x(2)L xn\

.(2)
'1P2

x{2)Xnp2

The minimization problem is called a Procrustes problem because

X\ is transformed by T to best fit X2. Under that ordinary point of view,

T is unrestricted real matrix. According to Gower & Dijksterhuis (2004),

that is a multivariate multiple regression problem (1.1). Therefore, one can

derive a least squares estimator3 of T.

3Demonstrationin (A.l).



=(*í*l) lx[x2. (1.1)

The groundwork for Generalised Procrustes Analysis (GPA) was in

Factor Analysis laid by Green (1952), Cliff (1966) and Schõnemann (1966).

They solved the problem of orthogonally transforming one matrix X\ to an

other X2 only allowing an orthogonal transformation, minimizing the least

squares criterium. It is called the orthogonal Procrustes problem (1.2). The

two configurations had an equal number of columns. The solutions of Green

and Cliff only work for matrices of full column rank, while Schõnemann gen

eralised the solution to matrices of deficient column rank.

\\XlQ-X2\l (1.2)

where Q is an orthogonal matrix.

Schõnemann & Carrol (1970) proposed the first extended problem.

Their problem allowed a rotation, a translation and the multiplication by

a scaling factor for adjusting the two given matrices. That was called an

extended orthogonal Procrustes problem or Ordinary Procrustes Analysis

(OPA), equation 1.3.

IWJfi-ltti)Q-(X2-lt4)H, (1.3)

where 1 is a vector of ones with n positions and uí is a vector of length pi,

that is, lUi is a translation matrix nxpi; and 5 is a scalar factor associated

with X\ to stretch or shrink it, in order to turn it as similar as possible

to X2. Note that, if the elements of it» are the average of the columns of

Xi, the matrices as translated to have their centroids superimposed at the

origin.
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Gower (1971) had taken the first steps towards the generalised or

thogonal Procrustes analysis (GPA or GOPA). In that context, X\ and

X2 are replaced by k sets X\,..., Xk- This may have been the first in

stance where the matrices X\,...,Xk are regarded as configuration matri

ces rather than as coordinates matrices of factor loadings (Gower & Dijk-

sterhuis, 2004).

Studying factor loadings, Kristof & Wingersky (1971) considered
k

minimizing the multi-set criterion ^||XiQt - AVQi/|| to determine the

orthogonal matrices and to give an average "factor matrix" referred to by

i=l

Gower (1975) introduced GPA minimizing the same criterion as

Kristof & Wingersky (1971) but introducing scaling factors for each set

and viewing the whole problem as one of matching configurations (1.4). He

was also the first to coin the term Generalised Procrustes Analysis and to

introduce scaling factors Si (i = 1,..., k) for each matrix Xi. The problem

follows:

53 \\sí(Xí - lu^Qi - Si,(Xi, - lu;,)<3i<||, (1.4)

what is equivalent to minimize

k

k^WsiiXi-lu^Qi-GH (1.5)

where G is called group average configuration (1.6),
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1 *
<? =£]£>(*-ltiJWi. (1-6)

t=i

Gower (1975), in the generalisation of the Procrustes analysis, presents

an iterative algorithm that seeks for the parameters of interest (Q», s,, lwj

e G) while the euclidian distances between similar vértices along the con

figurations are minimized. In 1977, Ten Berge corrected Gower's method

for the determination of the central dilations, and improved Gower's pro-

cedure for the calculation of the orthogonal transformations. Ten Berge &

Knol (1984) extended the problem to the case where two or more configu

rations have a different number of columns (although only for orthogonal

transformations). More recently, Peay (1988) has solved the problem of fit

ting more than two configurations with differing dimensionalities including

translations and central dilations.

According to Lingoes & Borg (1978) Generalised Procrustes Anal

ysis can be seen as a model that treat each configuration of a panei as a

mean configuration plus an error (1.7). That statement is possible since

those transformations do not affect the relative distances between the stim-

ulus4 points (rows of Xi). If a generalised Procrustes analysis does not

result in a satisfactory match, that is, if the minimum residual sum of

squares is still a big number, this may be due to the fact that the relations

between the configurations are of a more complex nature (Commandeur,

1991).

Sí{Xí-\u'í)Qí = G+ Eí (1.7)

AStvmvXus is another term used to refer to the rows of Xi. Stimulus can be considered
as a synonym of objects and products. By the way, subjects is another term for assessors,
used by psychologists. It can be found along the text.
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where Ei is a (nxp) residual matrix and i = 1,..., k. That is the first of

the PINDIS (Procrustean INdividual DIfferences Scaling) models brought

by Lingoes & Borg (1978) and was called the similarity transformation

model or Generalised Procrustes Analysis (1.7). In the second and in the

third PINDIS models, (1.8) and (1.9), a transformation called dimension

weighting is introduced, that is, dimensions are allowed to be stretched or

shrunk differently when matching n configurations. Follow the second and

the third PINDIS models, respectively,

(Xi - Iu'í)Qí = (G- ifàSWi + Ei (1.8)

and

(Xi - Iu'í)Qí = (G- \g'dSiWi + Eu (1.9)

where pt- is a translation vector for the group average configuration specific

for assessor i; S and Si (pxp) are orthogonal matrices and W, is a diagonal

matrix of weights (pxp).

The phycological interpretation is that in (1.8) the assessors agree

on the underlying dimensions that structure the stimuli under investigation

(that is, the axes of GS), but differ in the importance they attach to the

dimension on which the stimuli are ordered; on the other hand, in (1.9)

they not only differ in the importance they attach to the dimension, but

also have their own views on which dimensions of G are to be considered as

important. That is represented by the index i in Si (Commandeur, 1991).

These PINDIS models are less parsimonious than the GPA model since

they require the estimation of more parameters than in GPA model. This

means that the dimension weighting models always fit the data equally as
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well as or better than the GPA model.

The forth (1.10) and the fifth (1.11) PINDIS models proposed by

Lingoes & Borg are called by Comnandeur (1991) as stimulus weighting

models, as follows:

(Xi - lu'i)Qi = Vi(G - lg') + Ei (1.10)

(Xi - \u'í)Qí = Vi(G - lg[) + Ei (1.11)

where g and gi are translations vectors; Vi is an unknown diagonal matrix

of stimuli weights.

The essential difference between the two stimulus weighting models

is that G is only translated once in (1.10) while it is translated differently

for each configuration i in (1.11).

Lingoes & Borg (1978) even discuss a sixth model where the com-

bined effects of dimension weights and stimulus weights are investigated.

Commandeur (1991) call it a double weighting model.

However the algorithms for estimating the parameters of PINDIS

models brought by Lingoes & Borg (1978) present a list of problems. Com

mandeur (1991) brings improved algorithms for those estimations, general-

isations to the p-dimensional case for ali estimation procedures, algorithms

to deal with incomplete configurations (missing rows) and analysis of vari-

ation allowing one to assess the relative contributions of configurations,

stimuli and dimensions to the total fit of each model.

Most of the extensions of GPA typically are concerned with data

sets consisting of matrices having unequal number of columns. However,
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the case of different number of rows (that is, missing Information about

one or more stimuli) are mentioned by: (i) Everitt Sc Gower (1981) apud

Commandeur (1991), in the context of what they called a weighted gener

alised Procrustes method, where they did not incorporate central dilations;

and De Leeuw & Meulman (1986) apud Commandeur (1991); (ii) in Jack-

knife context, where they allowed only one missing stimulus per matrix.

Commandeur (1991) bring a matching procedure called MATCHALS that

allows any pattern of missing rows.

A scheme is presented in Figure 2 roughly summarizing the path of

Procrustes problems.

1.4 Sensorial Analysis

Sensorial analysis or Sensory analysis is a very wide field of the sci-

ence concerned to understand, describe, measure and/or even reproduce the

mechanisms of perception of externai stimuli by human basic senses. The

word sensorial comes from Latin sensus, which means sense (Anzaldua-

Morales, 1994).

Mueller (1966) says that the senses are our highways to the outside

world. Though that phrase is not very related to senses, it remind us that

the only way to perceive the world is through our basic senses. Everything

one knows besides his/her instincts carne to him/her by the basic senses

(Table 2).

Depending on how one looks to that system, it receives a different

name. For instance, when one wants to understand how a person perceives

an object (focus on the person), we are in the field of Psychology. It can

receive the name Sensory Psychology and/or Psychophysics when regards

the physiology of perception and physical phenomena related to perceiving

something (Mueller, 1966); and Experimental Psychology or Psychometrics,
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TABLE 2: Comparison of human basic senses according to the number of
discernible stimuli, sharpness of discrimination, average speed of reaction
and duration of sensation (adapted from Amerine et ai., 1965).

Stimuli

(#)

Discrimination

(%)

Speed
(sec)

Duration

(sec)
Sight 40,000 1 0.189 0.03

Hearing 15,000 33 0.146 0.002

Smell ? 25 ? ?

Touch 3-4 (?) 33 0.149 IO"3

Taste 4 (+,?) 5 0.3-1 ?

when effort is made to measure the senses (0'Mahony, 1985). On the other

hand, when the main interest of the researcher is to understand how the

object is perceived by someone (focus on the object), we are in the field

of Sensory Evaluation (Noronha, 2003). Therefore, Sensory Evaluation

is a group of techniques used to investigate, for instance, whether a tiny

modification in a manufacture process can be detected by a consumer.

A huge subset of Sensorial analysis is the Sensometrics. It regards to

every effort made to measure stimuli been perceived by human basic senses.

That measurement processes is consider Sensometrics in spite of whether

the focus is on person or object, though most works in Sensometrics are

focussed on objects.

Sensometrics arose into 50's and 60's and is a kind of modera term

to refer to Statistics appiied to Sensory Sciences (Heymann, 2006). One of

Sensometrics' strongest characteristics is that, in the last decades, multi-

variate Statistics have been the preferred set of tools for exploring sensa-

tions (Sinesio et ai., 1992; Daems k Delvaux, 1997; Hummer, 1998; Thybo

& Martens, 2000; Allcroft et ai., 2007). Due to its multidisciplinary profile,

Sensometrics is able to congregate appiied statisticians, experimental psy-
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chologists, food engineers, chemical engineers, mathematicians, physicists,

doctors, marketing people and so many other practitioners interested in

human senses.

Though Sensory Evaluation can be used to investigate how any kind

of object is perceived by human senses, its use is by fax greater in food

science (Ferreira, 2004; Jorge, 1989; Aquino, 1992; Aguiar, 1995; Cardoso,

1994; Malvino Madrid, 1994; Chagas, 1994; Magalhães, 2002).

However, other products can be studied regarding the sensations

they produce. For instance, automotive industry is an increasing field of

studies. Sensation of car breaks and interaction between consumer, car and

road have been studied by Dairou et ai. (2004) and Astruc et ai. (2006),

respectively. The cosmetic industry is also very developed due to constant

investigations of mainly odor and color perceptions (Wortel et ai., 2000;

MacDougall, 2000; Chrea et ai., 2004).

In a sensory context, in a large sense, a set of people evaluate a

set of objects. When those people are trained assessors or experts, they

are called a panei. When they are not trained at ali and are searched at

marketplace, they are called consumers. In that context, one even can

imagine degrees of training, i.e., people who are rapidly trained or even are

used to the sensory world, were trained before but not for the object at

issue. The prior can be understood, therefore, as a semi trained assessor.

At last, there are untrained people who are not asked for scoring objects

in their usual marketplaces (but anywhere else). Lets call them untrained

assessors.

How was said above, in Experimental Psychology the main focus

of the work is the person. So, attention has to be paid to the fact that

one is seeking for random samples of people, i.e., they should be random

elements of a population of interest for which conclusions and statements

are to be maid (0'Mahony, 1985). On the other hand, when a panei of
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trained assessor or experts is used to evaluate something, it has to be clear

that it is not a random sample of a population of consumers. They were

screened from a population of consumers for been skillful, trained to be

able to precisely detect several sensorial attributes and distinguish between

products supposedly similar.

In the sensory evaluation of foods (or other products), there can

be more than one goal. In some situations, people may be used for a

preliminary analysis to measure an attribute of the food and provide clues

for later chemical or physical analysis. In others, they may be used to

measure, say, flavor changes due to a change in the processing of the food.

They can describe a product or compare a set of possible recipes to the

market leader. Consequently, assessors can be evaluated with respect to

the precision (variance), exactness, accuracy, i.e., success of the training

process. In turn, consumers can be used to evaluate preference for one

product rather than others, indicate the levei of that preference or even say

whether they would buy it.

Depending on how the group of assessors is chosen, the factor as

sessor can be assumed to be a fixed or a random effect. For instance, a

panei comprising of a few people is selected and trained to become judges in

the specific task required, whether it be detecting off-flavors in beverages

or rating the texture of cakes. That would be a fixed effect. Generally,

potential judges are screened to see whether they are suitable for the task

at issue. This careful selection of judges is in no way a random sampling

and is the first reason why the judges could not be regarded as representa-

tive of the population in general. The training then given to the selected

judges will usually make them more skilled in their task than the general

population would be; this is the second reason why they can no longer be

regarded as presentative of the population from which they were drawn.

Those judges are not a sample to be examined so that conclusions can be
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drawn about a population; they are the population (0'Mahony, 1985).

Statistically thinking, a good training is expected to scale their mean

scores (vector of means, in a multivariate sense) closer to the parameter, i.e.,

remove possible natural bias specific for that person; and decreases their

variance (covariance matrix). Note that as a good training can remove the

bias more and more, a bad one can insert a bias not observed since then!

Considering the whole process of selection, training and scoring to

be an experiment, the panei can be considered a sample from a theoretical

population of trained assessors. That enables statistical inference. Usually,

this is not treated this way because the theoretical population of trained

assessors is kind of immaterial and judged as of low importance by some.

The panei is frequently consider the population itself and each assessor is

like a measurement instrument. 0'Mahony (1985) says that when the focus

of the study is very much on the food, the judges are merely instruments used

for measuring samples offood. Logically, one goodjudge would be adequate

for this purpose, as is one good gas chromatograph or atomic absorption

spectrometer. More than one judge is used as a precaution because unlike

a gas chromatograph, a judge can become distracted; the cautious use of

second opinion can provide a useful fail-safe mechanism. Apart from that,

one can consider that theoretical population particularly when dealing with

semi trained assessors.

On the other hand, if one wants to investigate how regular people

perceive a particular product, it can be done drawing untrained assessors

from the potential buying public (at the marketplace or not). Then from

this sample, inferences can be made about the population of untrained

people in general. The experiment now becomes similar to one in Sensory

Psychophysics.

In both cases, it is worth considering each assessor to be a block.

He/she has exactly the attributes of a block, like homogeneity within and
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heterogeneity between scores. But the differences between considering ran

dom or fixed effects becomes important for analysis of variance, where dif

ferent denominators are used for calculating F values. Where conclusions

apply only to the judges tested, the judges are said to be a fixed effect.

Where conclusions apply to the whole population from which the judges

were drawn, the judges are said to be a random effect.

According to 0'Mahony (1985), in Psychology or Psychophysics,

people are the subject of the investigation and thus tend to be called sub-

jects. In sensory evaluation, or sensory analysis as it is also called, peo

ple are often specially selected and trained and tend to be referred to as

judges. In sensory analysis, judges are tested while isolated in booths; ex-

perimenters and judges communicate by codes, signs or writing. In Sensory

Psychophysics, the experimenter and subject often interact and communi

cate verbally; this requires special training for experimenters so that they

do not influence or bias on the subjects. The methods of sensory analy

sis are often derived from those of Psychophysics, but care must be taken

when adapting psychophysical tests to sensory evaluation. This is because

the goals of the two disciplines are different and they can affect the appro-

priateness of various behavioral methods of measurement used, as well as

the statistical analysis employed. In Psychophysics, the aim is to measure

the "natural" functioning of the senses and cognitive processes. Extensive

training will not be given if it alters a subject's mode of responding or

recalibrates the person, so obscuring his or her "natural" functioning.
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MISSING VALUES IN PROCRUSTES

PROBLEMS

2.1 Orthogonal Procrustes Rotation

The minimization problem of transforming one given matrix Xi by

a matrix, say T, such that best fits a given target matrix X2 is called

a Procrustes Problem. The term Procrustes Problem is due to Hurley &

Cattel (1962) whose suggested the problem of transforming one matrix into

another by minimizing the Residual Sum of Squares (RSS)

\\XiT-x2\\

for the first time. Here, T refers to a general transformation matrix but

Schõnemann (1966) solved that problem for a restricted case where Q,

instead of T, is orthogonal. Of course, when there are no restrictions, that

problem can be solved as a multivariate multiple regression, i.e.,

T = (XÍX1)-1X'1X2.

In the orthogonal case, i.e., when the general transformation T is replaced

by an orthogonal matrix Q, that problem is called Orthogonal Procrustes

Rotation (OPR). In fact, if one consider that the post multiplication by

an orthogonal matrix is itself a rotation (Gower & Dijksterhuis, 2004),

that term could be consider a pleonasm. The terms Procrustes Rotation

(PR) or Ordinary Procrustes Rotation (OPR), where Ordinary refers to
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the match of only two configurations, would be more suitable. In this case,

Q provides a rigid body rotation in X\ in order to best fit X%, leaving the

relative distances among its rows untouched (Figure 3). Solution for that

case can be achieved by Q = VU', where V and U come from the singular

value decomposition of X'2X\ = UT.V (Schõnemann, 1966).

FIGURE 3: Illustration of rotating a matrix X\ to fit X2, in order to
show the corresponding vértices. Source: Commandeur (1991).

For a better match, translations to the origin can be done and a

scaling factor can be allowed in the orthogonal case, modifying the problem

to

\\s(Xl^lu'l)Q-(X2-\v!2)\\.

where Ui is a vector of column means of the ith configuration. Gower h

Dijksterhuis (2004) consider both configurations already centered, turning

out in a problem with simpler notation (2.1),

\\sXlQ-X2\\. (2-1)

Furthermore, they show that such scaling factor may now be estimated by

minimizing (2.1) subject to the constraint that Q must be orthogonal, given

traceiX^XiQ) trace(Z)
s =

11*1 ll^i
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Both s and Q are usually estimated in an iterative algorithm that seeks for

the minimum of (2.1), until convergence.

2.1.1 Missing values

Missing values are typical in sensory experiments due to several lim-

itations: (i) physical (fatigue); (ii) financial (samples and consumers); (iii)

operational (samples); (iv) sections duration; (v) eventual losses (several

reasons).

In practical situations, X\, X2 or both may present missing values

due to either the impossibility of collecting ali data or loss of information.

In a general statistical problem, one has basically two ways of dealing with

missing data: (i) modeling the problem without the missing information

or; (ii) estimating it under some constraint. Here, one is concerned in

estimating them in some way. Then, the algorithm can be modified to

iteratively alternate steps of missing values estimation and Residual Sum

of Squares minimization (Gower & Dijksterhuis, 2004).

According to Gower& Dijksterhuis (2004), the estimates of the miss

ing values must be such that the RSS between configurations is minimum.

It is clear that one wants the estimates to be as similar as possible to the

missing values, but it is not possible to formally impose that constraint

since the only information one has about the missing values are, of course,

the non-missing values. Nevertheless, in typical Procrustes situations, i.e.,

when the columns of the matrices are not variables, but dimensions, the

remaining information tell us even less about the missing values.

In iterative algorithms, as the one suggested by Gower & Dijkster

huis (2004) for two matrices, it is necessary to start the process of estima-

tion/minimization by setting putative values in the missing cells. Then,

the following question is natural: Does any putative value lead to the same
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estimate? Of course, when one has to minimize functions that have some

local minima, the answer can be negative. In this case, one has to seek for

the best way of determining them.

y<2)

FIGURE 4: Scheme of the distances (RSS) between X\ (before rotation)
and the unknown full data X2 and the possible arbitrary configurations
*2 »(* = 1> 2,3,4,...) according to the putative values chosen.

For instance, let X2 present some missing values. There is an infinity

of ways of filling its missing cells with putative values, therefore, an infinity

of different initial configurations JJQ (* = 1,2, ), most of them likely

different from the unknown (full) configuration X2 (Figure 4).

Summarizing, three information sources are used to estimate the

missing cells: (i) the information contained in the non-missing data; (ii)

the imposed constraint and; (iii) the information brought in by the putative

starting values. The first one tends to be the weakest; the second tends to

be the strongest; and the levei of interference of the the third is not well

known and is going to be investigated in this paper.

With real and simulated data, we observe the behaviour of the es

timation algorithm for two matrices described by Gower & Dijksterhuis

(2004) imposing the constraint that minimizes the RSS. Simulating differ

ent leveis of loss for non-error and real sized error data sets, we seek for the
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best way of establishing putative values to start the iterative process.

2.1.2 Methodology

Let Wi (i = 1,2) be indicator matrices which elements are unit where

the correspond position in Xi is missing and zero otherwise, for instance

^0010

Wi = 10 0 1

^0110

If X2 has missing data, one can estimate them constrained to

\\XlQ-(X2*W2)\\ (2.2)

to be minimum. The whole process begins by inserting putative values

in the missing cells of X2 and finding the Q that minimizes (2.2). In the

estimation step one must replace the missing cells' values by the estimates

given by the estimator that minimizes (2.2), i.e.,

W2* (XiQ).

With configuration X2 updated, one now updates Q in minimization step

and iterate those steps until the RSS converges to a minimum.

If, instead, X\ has missing values, one can just reverse the roles of X\

and X2 in the procedure described above, noting that ||(Wi *X\)Q —X2\\ =

11 (Wi*X2)Qf—X\11. Therefore, the estimator for the missing values of X\ is

W\* (X2Q')- Finally, when they both have missing values, both procedures

must be alternated until convergence.
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Simulation study

For testing the behaviour of such procedures according to the num

ber of missing values, it was considered matrices X\ and X2 (6 x 3) in

situations of perfect match (error-free) and plausible sized error (using em-

pirical data). It was simulated the loss of 5%, 10%, 25% and 50% of the

data in each Xi (i —1,2) and 24 combinations of them (Table 3). Those

combinations correspond to lose 3%, 6%, 8%, 11%, 14%, 17%, 19%, 25%,

28%, 31%, 39%, and 50% of the whole information. Each single combina

tion was repeated 500 times. Of course, the combination of no loss in both

matrices was the full data situation, used as a reference.

TABLE 3: Simulated loss in X\, X2 and in both matrices, expressed as a
percentage of the cells.

Loss in Xi Loss in x2 Loss in the whole system
5% 0% 3%

10% 0% 6%

25% 0% 14%

50% 0% 25%

5% 5% 6%

10% 5% 8%

50% 50% 50%

For the error-free situation, one fixed matrix X\ was rotated by a

random orthogonal matrix Q for generating the target X2. For the plausible

error situation, one empirical data set was used (Lele & Richtsmeier, 2001),

who measured six landmarks on nine Macqaque skulls.

In order to check the influence of different putative starting values

in the missing cells, three sources were considered: Gaussian and Uniform

distributions and a fixed scalar.
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Gaussian distributions were defined byparameters \ic and u\, where

fic represents the average of the non-missing cells in one column. Then, one

distribution was used to draw values for each column that presented missing

cells. When a whole column was missing, \ic was set to zero. Parameter a\
represents the variance in column c. When the whole column was missing,

a\ was set to one. Note that this procedure is repeated along ali columns

that contain missing cells both in X\ and X2.

Uniform distributions were defined by parameters ac and bc. The

lower and upper limitsac —-acV3 and bc = crc\/3, were ac is the standard

deviation of column c, of course, when c contains missing cells.

The scalar value was set to be zero because ali configurations were

centered before the algorithm to begin. Then, zero was aiways the mean of

every column.

It is clear that when one inserts a putative value coming from a

distribution instead of a fixed mean value, he/she is inserting variability

in the process. However, if the algorithm leads to a global minimum, ali

answers should be the same. Of course, where the putative values are more

far away from the mean, it is expected the convergence to happen after a

higher number of iterations.

The behaviour of the estimates was evaluated along ali situations,

namely, the combinations of two types of error size: non-error (perfect

match) and real sized error (empirical data set); three sources of putative

values: Gaussian distribution, Uniform distribution and scalar zero; and

ali leveis of induced loss. To check the behaviour of the estimates five

parameters were examined, u, <5, <f>, rj andR2. Their meanand the standard

deviation were recorded along 500 replications.
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(a) Residual Sum of Squares discrepancy (u):

u = RSS - RSSe,

where RSS is the Residual Sum of Squares after adjustment of the full

data sets and RSSe is the Residual Sum of Squares after match the

data sets under loss and posterior estimation.

That parameter u indicates how similar the estimated data sets are

from the full data sets in terms of match. It is one of the possible

Índices of quality of estimation. The closer to zero u> is, the similar are

the RSS's. However, it is worth noting that is expected the RSSe to

be smaller than RSS since the estimation constraint imposes that the

estimates are such that the RRS is minimum.

(b) Mean squared loss (õ):

E2., *£,(*£-#)*
í =

77li + ?7l2

where m, is the number of missing values in Xi (i = 1,2); xff is the
real value of the jth missing cell in Xi (j = 1,... ,mi); and xfj is its
estimate.

That is a really quality of estimation index. It achieves the mean

quadratic distance between the real value and the estimate of a missing

cell, along ali of them. Clearly, the smaller is õ, the better are the

estimates.

(c) Scaling factor discrepancy (<f>):

4> = S —$e,

where s is the scaling factor obtained when one matches the full data

sets and se is the scaling factor when the sets have estimates in their

missing positions.
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Of course, one wants se to be as similar as possible to s, but the be

haviour of <j> along an increasing number of missing values is not trivial.

(d) Number of iterations until convergence (77).

That parameter indicates efficiency. Besides achieve the right answer

(the global minimum of the function), one wants to do that as fast as

possible. Though, one wants n to be small.

(e) Explained variation (R2)

R2 =
2_ Var(fitted) _ 2síroce(E)

Var(Total) s2||Xi|| + ||X2|r

In this case, R2 suggests how similar X\ transformed can be to X2.

Again, this parameter indicates quality of match. The closer to one,

the better the match.

AH computations were performed by specifically made R functions

(Appendix B).

2.1.3 Results and discussion

Results were divided into two sections: (a) Exact match and (b)

Real sized error. Here, is explored the behaviour of each parameter along

the increasing value of missing cells in the whole system. It could be ex

plored the behaviour along missing cells in just one matrix, but it would

be redundant, since they were quite similar.

2.1.3.1 Exact match

In this situations there is no error, since X2 is a perfect transforma

tion of X\. According to Figure 5a one notes that the discrepancy between

RSS of full data sets and estimated data sets is small with few or too many

30



missing values. That is easy to understand since when one has few missing

values, the situations are very similar; and when one has too many ones,

their estimates are such that the RSS is minimum. Since the original RSS

is already zero (perfect match), then the discrepancy tends to decrease.

A similar behaviour is observed in R2 (Figure 5b). With the same

explanation given above one can understand why R2 is maximum in cases

of few and too many missing values.

For both u and R2 the best behaviour were given by the putative

values set to zero. In fact, if one constructs confidence intervals based on

Normal distribution for those parameters one can note that the estimates

do not differ statistically from source to source, but, since setting a fixed

scalar is very much easier than sampling from a distribution, there is no

reason to consider the most complicated options.

In Figure 6a, one can observe that 6 is much smaller when the scalar

zero is used. Again, the worst situation happens in a median rate of loss.

The estimates of n are more similar along putative sources, but the worst

behaviour happens in the same percentage of missing values.

It is worth remembering that the apparent straightforward estima

tion when there are too many missing values is not a good thing, since

the estimates are necessarily similar to the missing data. They are just

convenient to turn the matrices similar and the match better.

Scaling factor discrepancy <j> brings us a more fare result in Figure 7.

The more missing values, the worst the scaling factor that results from the

matching. That is a strong argument against the apparent good situation

of having several missing values.
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FIGURE 5: Behaviour of parameter (a) u and (b) R2 alongan increasing
rate of missing values, when their putative values come from Gaussian (*)
and Uniform (o) distributions and a fixed scalar (a).
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FIGURE 6: Behaviour of parameter (a) õ and (b) 77 along an increasing
rate of missing values, when their putative values come from Gaussian (*)
and Uniform (o) distributions and a fixed scalar (a).
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FIGURE 7: Behaviour of parameter <f> along an increasing rate of missing
values, when their putative values comefrom Gaussian (*) and Uniform (o)
distributions and a fixed scalar (a).

2.1.3.2 Real sized error

In this situations we look to the estimation in a real sized error

context. However, we noticed that this particular data set already gives a

good match, i.e., the minimum RSS is already small.

Figure 8a shows an asymptotic behaviour of u (difference between

RSS's) going to 1.2 (original RSS), indicating that RSSe goes to zero as

the number of missing values increases. Here, ali three sources of putative

values give statistically the same answer as well. Variance explained R2
goes to 1, in a similar behaviour (Figure 8b).

6 and 77 show almost the same behaviour of exact match situations

because, as explained above, this particular empirical data set already had
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FIGURE 8: Behaviour of parameter (a) u and (b) R2 along an increasing
rate of missing values, when their putative values come from Gaussian (*)
and Uniform (o) distributions and a fixed scalar (A).
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a great match (Figure 9a and 9b).

In real sized error situations <f> shows an even worst behaviour when

the number of missing cells increase. Figure 10 displays the values spreading

along x axis and tends to suggest that the scalar zero seems to provide better

estimates. However, the sources of putative values can be considered equal

comparing confidence intervals based on Normal distribution.

2.1.4 Conclusions (A)

The algorithm described by Gower& Dijksterhuis (2004) to estimate

missing data in Orthogonal Procrustes Rotation seems to play a good role

estimating them subject to minimize the RSS of the match.

The more missing values the system has, the better is the fit, but it

does not guarantee that the estimates will be similar to the lost values.

In situations of typically low RSS, median rates of loss (between

14% and 42% of the total information) tend to provide worst estimates.

Scaling factor discrepancy $ seem to be a good quality parameter

to denude an excess of missing values.

In most of the cases, it does not matter the putative values source.

However, there is no logic reason to recommend a procedure that inserts

variability in the process. For that reason, centering and starting the es

timation process with the scalar zero seems to be the more reasonable

attitude.
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% missingvalues

(b)

FIGURE 9: Behaviour of parameter (a) 6 and (b) 77 along an increasing
rate of missing values, when their putative values come from Gaussian (*)
and Uniform (o) distributions and a fixed scalar (a).
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FIGURE 10: Behaviour of parameter <f> along an increasing rate of missing
values, when their putative values come from Gaussian (*) and Uniform (o)
distributions and a fixed scalar (A).

2.2 Generalised Procrustes Analysis (GPA)

Until 1975, Procrustes problems used to concern only with two data

sets, that is, when one matrix is transformed to match one target. In that

year, Gower generalised those problems to deal with k sets. In nowadays,

many practical applications demand matching more than two configura

tions. To state a notation, consider the following Procrustes problem1

f(s\,..., Sfc,«i,..., Ufc,7i,...,Tk) =
k

=53 \\sí(Xí - lu'i)Ti - Si^Xv - ItijOIVIl, (2.3)

1Although in general transformations the scaling factor (s») becomes meaningless,
since it is absorbed by the matrix Ti (i = 1,... ,£), here the most general problem is
stated and ali estimators derived in order to promptly obtain any particular case latter.
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where Xi is a known nxp data matrix; Si is a scaling factor; Ui is a

translation vector; and Ti is a general transformation matrix (i < i' —

1,...,*).

For algebraic facility and to increase interpretability, it is useful to

express the same general problem (2.3) as a summation of distances between

each transformed configuration and the group average. The latter is the

way of expressing the Procrustes problem called by Commandeur (1991)

as the centroid approach. It is easy to demonstrate that the foUowing basic

identity holds (similar to A.2)

k k

J2 \\sí(Xí - lu^Ti - 8i'{Xe - luíOZVII =*£ \\sí(Xí - ltií)T« - G||,
i<i' i=l

(2.4)

where G is the group average,

1 kG=-^^(Xi-lOTi. (2.5)

In turn, (2.4) can be rewritten, using another basic identity (A.3),

to express the problem as the summation of distances between each config

uration and the iíh-excluded group average.

kf^ \\sí(Xí - lvl)Ti -G\\ =k(±Z1) £ \\Si(Xi - ltQTi - Gi\\
t=i \ ft / i=1

where G% is the ií/i-excluded group average, that is

1 kGt =y^ £ MXi> - 1«Í0^. (2.7)

Expressing the Procrustes problem in terms of the Gi instead of the
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commonly used G, one observes two advantages: (i) it avoids the patholog-

ical case where the group average is zero; and (ii) the ií/i-excluded group

average does not depend on Xá, what helps improving the efficiency of the

estimation algorithm.

For notation facility, let Xã denote the ith centered configuration,

i.e. Xd = Xi—lUi- Moreover, from nowon lets suppress the constant ~k

from (2.6) since it is imaterial for the minimization process. Therefore, (2.6)

becomes
k

YtWsiXciTi-GiW. (2.8)
t=i

2.2.1 Considerations about non-orthogonal GPA

Considering non-orthogonal transformation matrices Ti for post-

multiplying data matrices Xi in Procrustes problems is a quite old and

not so developed issue. It might be so because of the good properties of or-

thogonal matrices Q*. They are able to simplify a great deal of the álgebra

and allow prompt practical interpretations. Moreover, they preserve the

relative distances between vértices of the configurations, i.e. they promote

rigid body rotations and preserve the original classification done by the

assessor.

However, some effort must be done towards finding and interpreting

non-orthogonal transformations able to minimize Procrustes problems (by

the way, to lower minima than orthogonal ones), under a suitable constraint.

Moreover, orthogonal transformations (Qi) are a particular case of general

transformations (Ti). Thus, since the álgebra is well known for Ti it is

immediately known for Qi, in a simplified form. Algorithms as well, can be

proposed for allowing the more general case and then computer packages

can allow the user to choose the desired transformation according to his/her

practical needs.
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Particularly, Gower & Dijksterhuis (2004) are concerned in devel-

oping a lot of álgebra involving general transformations Ti. A tiny part of

them is rewritten here.

Following, some álgebra is developed and some is reported for or

thogonal and non-orthogonal cases, along the estimation of missing values,

transformation matrices, scaling factors and translation vectors.

2.2.2 General transformation

(a) Estimating missing values

First of ali, lets describe an estimation process of missing values

suggested by Gower & Dijksterhuis (2004). It is a modified EM (estima-

tion/minimization) procedure that seeks for those estimates of missing val

ues that minimize a least squares metric. That procedure is described using

the notation adopted here rather than the notation used by the authors.

The following describes the estimation procedure for the ith X matrix and,

of course, the same process must be repeated for every matrix X that have

missing values.

Suppose Xi has M values missing in cells (ii, ji), (Í2> J2), •••>(ím,3m)-

The missing values may be estimated by a variant of the iterative EM al-

gorithm (Dempster et ai., 1977) where "M", rather than representing a

step for maximum likelihood estimation, now stands for the least-squares

Procrustes minimization, while "E" is a step, described below, that gives

expected values for the missing cells.

For fixed TV (i' = 1,..., k) and X? {%' # i) the terms of £?«/ \\XíTí-
XíiTí'|| that involve Xi requires the minimization of the criterion \\XíTí —

Gi\\ over the unknown values in given cells (iuji),(Í2J2),-••,(ímJm)-

Recall that Gi represents the ií/i-excluded group average, which is inde-
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pendent of Xi. One assumes that the cells with unknown values contain

putative values that one seeks to update by minimizing the criterion. Sup-

pose even that the updates are given in a matrix Xui, which is zero except

for the missing cells which contam values denoted by xi, x2,..., xm- Thus,

one wishes values of XUi that minimize2:

\\(Xi - Xui)Ti - Gt\\ = \\XuiTi - (XíTí - Gi)\\. (2.9)

This is a Procrustes problem itself, where now it is XUi, rather than

Ti, that is to be estimated. Transposition would put (2.9) into the basic

form. The constraint on XUi may be written:

M

Xui = xiehe'h +x2ei2e'j2 + ...+ xMeÍMe'JM = ^ Xmeime'jm (2.10)
171=1

where, as usual, ei represents a unit vector, zero except for its ith position.

This function is linear in the parameters xm so, in principie, the minimiza

tion of (2.9) is a simple linear least-squares problem; unfortunately, the

detailed formulae are somewhat inelegant (A.5). The terms in (2.9) that

involve Xui ara

tr[(XuiXUi)(TiTl) - 2Xuí{XíTí - G<)3Í] (2.11)

which one writes:

tr[(XuiXui)T-2XuiY} (2.12)

where T = TiT? issymmetric andY = {XíTí-Gí)TÍ, is the current residual

matrix.

The minimization of (2.12) over one missing cell xr, r = 1,2,..., M,

2(2.9) is demonstrated in (A.4).
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subject to the constraint (2.10) yields3:

Virjr =a;i(eireii)(<ir,ii) + x2{eirei2){tjrij2)+

+ -.. + xM(e'ireÍM)(tjr,JM) (2.13)

which may be written:

M

Vr = Y^ xm(eleim){tjr,jm), r= 1,..., M, (2.14)
m=l

or y = AiX, yielding x = A^xy. The matrix Ai is symmetric with el-
ements a™ = (eípeim)(íjr,jm)- This will be zero unless iT = im, which
would imply that missing values xr and xm are in the same row of XUi.

When no row contains more than one missing cell, Ai is diagonal and then

Xm = yim,jm/tjm,jm'

In general, Ai contains diagonal blocks, each block being symmetric,

with as many rows/columns as there are missing cells in the pertinent row

of Xui.

For a better comprehension, consider the following example: sup-

pose Xi (3 x 2) with cells xn, £31 and X32 missing (denoted by o),

' £11 o 1

X21 Z22 • (2.15)

\ o o )
So, the Índices of the missing cells can be disposed as in Table 4.

Then, matrix Ai is a block diagonal formed by two blocks: the first

is 1 x 1 (because the first row of Xi has just one cell missing in its first row);

and the second is 2 x 2 (because there are 2 missing cells in the second row

l(2.13) and (2.14) are demonstrated in (A.8).

43



TABLE 4: The Índices of the missing cells.

m ir jr
1 1 2

2 3 1

3 3 2

ofXi):

f <22 0 0 ^
*i= 0 in íia • (2.16)

\ 0 tu *22 /

As a general formule, one may consider filling the diagonal of Ai

first: diag(Ai) = {%«} = fyrJ-r; ^d tnen filling up the non-diagonal

elements of the blocks crossed indexes of í.

At this point it is important talking about translation. Although one

could recentre after adjusting for the missing cells, it can be done better.

One assumes that the current settings of Xi and hence Gi are centered. To

preserve centring we replace Xui by its centred form

(I-N)Xui,

where íisanxn identity matrix and N = £ll'; where 1 is a vector of
ones of length n.

The effect of this is to replace the previous definition of Orm by

Orm = (el(I- N)eim){tjrjm). Thus, when ir = im, a™ = (1 - l/n)(tjrjm)
else Orm = —l/n(tjrjm), so that Ai is now replaced by

At = Ai-l/nT*,

where T* is made up of those elements of T corresponding to the columns
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of the missing cells (e.g. the third column of Table 4):

and when T is symmetric, tjrjm = tjmjr.

In the example, assume T* is a tabular form to turn explicit the

Índices r and m:

m/r 1 2 3

1 / *22 Í12 *22 *

2 Í21 íll <12

3 \ Í22 Í12 <22 /

This minor change gives x = A*~1y, so defining Xui, and then
{In)Xuí gives the required correction matrix. This is ali that is necessary

for handling translations. Recentring XUi derived from x = A~^xy and
using (I-N)Xui derived from x = A*~xy will give different updates to the
missing values, though both must converge to the same final estimates. A

near exception to this rule occurs for orthogonal transformations when the

two approaches hardly differ (Gower & Dijksterhuis, 2004, Section 9.2.1).

Now, an alternative procedure is presented for finding estimates of

the missing values. Such procedure intends to be an easier and compu-

tationally lighter alternative to the one described above. However it is

based on the same principie, that is, finding those estimates that minimize

a residual sum of squares. The main difference is the way the problem of

Procrustes is stated.

Suppose the following Procrustes problem, in a least squares metric:

k

Yl \MXa + Wi*Xui)Ti - Gi\\, (2.17)
<=i

where Xá has putative values in unknown cells (say, zeros); Wi is an in-

dicator matrix that contains ones in unknown cells addresses and zeros
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otherwise; Xui is an update matrix for Xi\ and * stands for an element-

wise product. Now, for notation matters, let X^ = Wi * XUi, where the

upper index r stands for restricted.

At this point a remark is necessary: when considering general trans

formations Ti it is not necessary to consider scaling factors Si. The effect

of the scafing factors is absorbed by the Ti's. However, one intends to state

the problem on its more general form, for which orthogonal rotation Qi is

a special case. In turn, when orthogonal rotation Qi is allowed, the use of

Si does make sense.

If one consider ali parameters known but the update matrix X^, for

each i = 1,..., k, one has to minimize

WsiiXá + X^Ti-Gill

what is the same as minimizing4:

tr[(x£Xà)T-2X£n (2.18)

where T = TOi and Y = (s~lGi - X^T!.

Minimizing (2.18) over X^ leads to the least squares estimator5:

Xrui = YT~1 (i = l,...,fc). (2.19)

However X^ is not necessarily restricted, that is, nothing guarantees

it has only values in the missing addresses and zeros otherwise, but as the

estimation process is already iterative, it possibly tends to converge to a

restrict matrix as is desired. Therefore, for obtaining estimates specifically

4Proof is given in (A.10).
5Demonstration is given in (A.9).
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for the missing values, one can restrict the answer:

Xrui = YT-1

W~7xui = YT-1

W^7Xui = Wi*YT-1.

Accordingly to the prior procedure described here, the translation

correction can be insert as well. Derivation of the estimator is omitted, but

it is similar:

Xli = Wi *[(/ - N^YT-1}. (2.20)

where [I-N) is as defined above. Howeveris important noting that (I—N)

can require generalised inverse due to possible singularity.

Of course such procedure is not so elegant as Gower & Dijksterhuis'

but it is a (at first sight) easier and computationally Hghter alternative that

might lead to the same answer when it converges.

(b) Estimating transformation matrices

Deriving the estimator of transformation matrices T» depends on the

constraint inserted into the minimization process.

With no restriction, i.e. deriving the estimator without any kind

of constraint, estimating Ti is solving a multivariate multiple regression

problem. In problem (2.8), considering s^ Xà and Gi as fixed6, it is easy

to solve the multivariate multiple regression problem7:

ti = -(XUXa^XUGi. (2.21)
Si

However, some kind of constraint is suitable for avoiding trivial so-

6Remember that XCi is not usually fixed because it is function of Xui; and Gi is
function of 7V, for i' -^ i, considered fixed by the algorithm when estimating T».

rDemonstration in (A.11).
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lutions as Ti = ... = Tfc = 0, where 0 is a matrix (p x p) of zeros.

Gower & Dijksterhuis (2004) derive an estimator of Ti minimizing a

Procrustes problem under a general quadratic restriction. That derivation

follows.

Consider the Procrustes problem rewritten in a hypermatrix form:

k

S= Y, WXciTi - XrfZVH = tr(kV'AV - V'ZV), (2.22)

where Z = {X^X^}, A = diag{X,clXcl,X'<âXc2,...,X'ckXck) and V =

T[,T'2,..., Tfk. Now, consider the constraint in a general form:

diag{aV'AV + (3V'ZV) = I, (2.23)

which can turn into severa! constraints. For instance, setting a = l/k and

0 = 0 generates the constraint diag{V'AV) = kl\ and setting a = 0 and

(3 = l/k2 gives diag{V'ZV) = k2I = fc2G'G. Differentiation of (2.22) with

Lagrange multipliers 7ii72> •••»7fl> axí^ writing T = dzap(7i,72,... ,7J?)>

gives:

fcAF - ZV = (aAF + 0ZV)T. (2.24)

Pre-multiplying the above by V and using (2.22) and (2.23), imme

diately shows that S = tr(F), so the criterion is minimized by selecting the

R smallest values of 7r that satisfy (2.24). One may rewrite (2.24):

ZV = AV$, (2.25)

where * = (kI-áT)(I+0T)'-1. Asusual, the matricesVZV and V'AVare

diagonal. Thus one has orthogonality even though (2.23) only constrains

the diagonal elements of these matrices. Thus (2.23) becomes:

ocV'AV + /3V'ZV = I,
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which in combination with (2.25) gives the scaling of the columns of TV

[V'AV){aI+ 0*) = {V'ZV){a$-1 + 01) = /.

However a two-sided eigenvalue problem requires at least one of the

given matrices in (2.25), (Z or A) to be positive definite, and since Z and

A are formed by X'uiXui they are both typically positive semi definite.

For that reason, the determination of Ti, that is V, is not straightforward.

Therefore, the further works are needed for developing Procrustes problems

with general transformations Ti.

(c) Estimating scaling factors

It is worth noting that, in the general transformation case, the scal

ing factors become meaningless since they are absorbed by the matrices Ti

(i = 1,..., k). However, if, for some reason, they need to be estimated in a

general case, it would be possible. Moreover, its estimator will be derived

here for didactic reasons, namely, the estimation process of scaling factors

in the orthogonal case will be showed to be a particular case of this one.

First of ali, lets rewrite (2.3) allowing for missing values as in (2.17)

but with Xi already centered as in (2.8).

k

f(si, ...,**) = £ WsiiXa +WitXuiW-SirlXcP +Wi,*XUi>)Ti,\\ (2.26)
t<t'

To simplify the notation, one can let Xà + Wi * XUi = X^, i.e.

configurations centered and enabled for missing data. That yields

k

/(«i, ...,«*) = £ WsiXSTt - s^X^Ti^W. (2.27)

Moreover, at the scaling factor step, one must consider the other

variables to be fixed, namely Xtí and Ti. Therefore, (2.26) and (2.27) turn
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out into functions of Si.

Rewriting equation (2.27) in a matrix form8, gives

/(«i,..., sk) = k[s'diag{S)s) - s'Ss (2.28)

where s is a vector containing ali Si and S is a symmetric matrix with

elements Sü' = {tr{T!X£X^T!)}, i = l,...,k.

Note that minimizing the loss function (2.28) is maximizing

h{s) = s'Ss. (2.29)

In order to avoid the trivial solution s\ — s2 = • • • = sjt = 0,

one must consider a suitable restriction. Suppose one imposes that the

configurations must have the same total size before and after the scaHng

transformation, i.e.,

k k

Dl^TiH = D|5íX-Tí||. (2-3°)
t=l i=l

Gower & Dijksterhuis (2004) emphasize that the scaled configuration

is important to be set to a fixed value, what is respected assuming X^ and

Ti to be fixed at this estimation step.

Expressing (2.30) in matrix notation using the prior definition of s

and S and assuming diag(S) to be a diagonal matrix corresponding to the

main diagonal of S, gives

tr{diag{S)) = s'diag{S)s. (2.31)

Since diag(S)z diag(S)~2 = Ik, where Ik is a k dimensional identity,

(2.29) can be rewritten as

h(s) = s'diag{S)*diag{S)-* S diag(S)~*diag{S)2 s.

8Proof is given in (A.12).
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Now, let

diag(S)~* S diag(S)~* = P$P'

be an eigenvalue-eigenvector decomposition, where P is a (kxk) orthogo

nal matrix containing the eigenvectors and $ is a (k x k) diagonal matrix

containing the eigenvalues of diag(S)~* S diag(S)~2. Then, the

expression (2.29), to be maximized, can be expressed as

h(s) = s'diag(S)2 P$P'diag(S)% s.

Now, if one let a = P'diag(S)z$, then

h(s) = a'$a.

Since

h(s) = a'$a < (f>ia'a,

where <f>\ is the largest eigenvalue and

a'a = s'diag(S)~2 PP' diag(S)z s

= s' diag(S)s

= tr(diag(S)),

then,

h(s) = a'$a< (f>itr(diag (S)). (2.32)

Since one wants to maximize a'<è a, one seeks for s such that h(s) =

<f>itr(diag(S)).

Lets denote pi the eigenvector associated with the largest eigenvalue
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<f>i, then rewriting (2.32) in the form of (2.29), gives

h(s) = <j>\tr(diag (S))

= tr(diag (S)) p'lP$P'pi

= (tr(diag(S))2diag(S)~2pi) S (tr(diag(S))2diag(S)~ipi\
=h(tr(diag (S))*diag(S)-*pi) .

So, the estimator of s should be

s = tr(diag (S))5 diag(S)~bpi, (2.33)

since it minimizes the loss function (2.28) and satisfies the constraint (2.31),

s,diag(S)s = (tr(diagS)2diag(S)~^p\J diag(S) Ur(diagS)2diag(S)~2piJ

= tr(diag(S))p[diag(S)~2diag(S) diag(S)*pi

= tr(diag(S))p'1p\

= tr(diag(S)).

(d) Estimating translation vectors

An easy way of dealing with translation vectors Ui (i — \,...,k)

is performing the estimation/minimization algorithm concerning only with

Xà, i-e-» centering the X matrices at each step. After convergence, the

translation vectors Ui can be estimated by the average of the columns of

Wi * Xi —Xâ and then, the estimator of the translation matrix is

lüí. (2.34)
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2.2.3 Orthogonal transformation

When the transformation matrices Ti (i —1,..., k) are restricted to

be orthogonal (say, Qi), the expressions tend to become simpler due to the

general properties of the orthogonal matrices.

(a) Estimating missing values

In the procedure described by Gower k Dijksterhuis (2004), making

Ti = Qi turn things simpler. When no correction for translation is done in

the missing cells, the estimator x = A~*y simplifies for x = y. However,

when the translation correction is done, the estimator of missing cells re-

mains x = A*~1y, because though T = A = Ip, T* and consequently A*
are not identities necessarily.

In the procedure proposed here, the estimator expression for X^ do

becomesimpler as well because T reduces for identity (T = QíQí = Ip) and

Y reduces for GiQJ —SiXà-

Therefore, the new estimator for X^{ (i = 1,..., k) is

Xrui = Y = GiQ'i-siXci (2.35)

or

Ki = Wi * [(/ - AO-HGzQÍ - SiXâ)}, (2.36)

when translation correction is allowed.

(b) Estimating rotation matrices

When one wants Tf to be orthogonal, producing a rigid body rotation

in Xà, the solution is well known.
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Consider (2.17) setting Ti = Qi, then

k

J2 WsiXàQi - Gi\\ =tr {s2Q'iX<XàQi - 2^*^ - G{Gi)

=tr (s2XÍXà ~2siG'iXàQi - Gfii) . (2.37)

Since Gi does not depend on Qi, and remembering that Si and XÜ

are considered to be fixed at this step, minimizing (2.37) is maximizing

tr(G'iXàQi)- Remember that one wants Qi to lead the function above to

its minimum and to be orthogonal. Then, for i = 1,..., k, expressing<2JX^

in terms of its singular value decomposition G^X^ = t/iEil^', where U and

V are orthogonal matrices and E is diagonal, gives

tr {G^Qi) = tr (UíEíV/Qí)

tr(G'iXàQi)=tr(XiV{QiUi)

= tr (XíHí) ,

where Hi = V(QíUí, being the product of orthogonal matrices, is itself

ortogonal. Considering the elements of Si and Hi, respectively, Ei = aj

and Hi = %, one has that

p

ír(Eiiíi) = 22h35Gh
i=i

which, because the singular values <73 are non-negative, is maximum when

hjj = 1 for j = 1,... ,p, the maximal value attained by the elements of an

ortogonal matrix. Thus at the maximum Hi = I giving, I = V!QíUí and

Qi = ViUi

Therefore, the estimator Qi that minimizes the Procrustes problem

and guarantees Qi to be orthogonal is:

Qi = VU' i = l,...,A:. (2.38)
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(c) Estimating scaling factors

Scaling factors are obtained from the same standard eigenvalue prob

lem (2.33), but its argument matrix is modified,

s = tr(diag (A))* diag(A)~%pi, (2.39)

where A is slightly different from S, i.e., it is function only of the centered

configurations Aa> = {tr{X^X^,)}.

(d) Estimating translation vectors

Following the same principie of centering Xi in each step of the al

gorithm and estimating Ui at the end, the estimator üi remains the same

(2.34) if one is performing an orthogonal transformation in the configura

tions.

2.2.4 Algorithm

Empirical tests have shown that the order of the steps in the modi

fied EM algorithm is responsible for a slower or faster converge. Moreover,

estimating ali parameters within each i or, for estimating within each pa-

rameter alU = 1,..., k, also seems to make a great effect. However, further

works must be done to comprove and explain such phenomenon. Following

algorithm is already in the suggested order:

1. Insert putative values in the missing cells of matrices XUi and compute
Xi, %= 1,..., k.

2. Centre matrices X* obtaining Xtí, i = 1,..., k.

3. Normalize X^, i = l,...,k.

4. Set initial matrices Ti to identities and s to unit vectors.
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5. Compute the ií/i-excluded configurations Gi, i— l,...,k.

6. Compute the initial residual sum of squares (Procrustes loss).

7. Estimate updated transformation matrices Ti or Qi, i = 1,..., k.

8. Estimate the missing values and update X^, i —1,..., k.

9. Recentre X^, i = 1,..., k.

10. Update Gi, i = 1,..., k.

11. Estimate new scaling factors Si, i = 1,..., k.

12. Recompute the Procrustes loss and compare with its previous value.
If their different suits a desired converge tolerance, than the process
is finished. Otherwise, return to step 7.

2.2.5 Conclusions (B)

Algorithms for estimating missing data in Procrustes problems are

still a unfinished field although well discussed in the recent literature. De-

termining a suitable (optimum) algorithm (order of steps) is a field to be

explored.

On the other hand other constraints should be investigated in order

to provide estimates closer to reality, i.e., closer to the cells that are missing.

For non-ortogonal transformations, two-sided eigenvalue problems

with both matrices positive semi-definite must be solved in order to guar-

antee such the convergence of the estimation process to plausible values.

Moreover, practical interpretation of such transformations are still waited

for a closer relation with sensory experiments.
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3 STATISTICAL INFERENCE AND GPA

3.1 Introduction

Generalised Procrustes analysis (GPA) is considered a descriptive

multivariate statistical method (Ferreira, 2004). A graphical method that

allows relative statements concerning a set of objects in its answer-plan.

Therefore, one of the results of GPA is an answer plan containing the two

first dimensions of maximal variation. When G is referred to that plan,

its n points (n objects) represent the consensus configuration. In sensory

analysis it represents the 'mean' scores, along the assessors, to ali analyzed

objects. However, each assessor configuration can be referred as well, for

instance, to check their distance from the group average. That plan is

generated by two axes that represent linear combinations of the attributes

(dimensions) used to describe the objets.1

However, GPA presents some Ümitations. Though any assumption

is necessary to be made about the multivariate distribution of the scores

given to objects' attributes, the current methodology does not allow the

statistical inference about a population of possible consumers of a product,

for instance. In other words, there is no statistical inference in Procrustes

analysis. It does not allow neither an interval estimation of the position of

an object in a multivariate sensorial space nor hypothesis tests with a levei

*It is worth noting that the number ofprincipal axes investigated may vary from 1 to
p, though it is most common to restrict the inference to the first two axes (the plan).
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of significance associated. The only possible conclusions are relative ones.
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FIGURE 11: (a) Relative eucUdian distances between objects A, B e C
(b) EucUdian distances between objects D and E.
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For instance, let Figure lia represent the .group average configura

tion of a panei about three objects, say, A, B and C. Therefore, the relative

eucUdian distance between the points can be understood as the magnitude

of the differences perceived to exist among the objects, according to the

group average configuration. Here, one can infer that the judges agree that

objects B and C are more similar than objects A and C, for instance (lia).

That statement is itself informative, but what about the question: "are A

and C distinct (statistically different)?", or "are the judges capable of dis-

tinguishing between objects B and C?". Besides, what about performing

an experiment to describe (compare) only two objects (Figure 11b)? What

can one infer in this situation? What does the magnitude of the distance

mean if there is no minimum significant distance known? Nothing at ali.

It never was the role of GPA to test the equality of objects' means.

It is clear from the quotations of use of translations that the first thing

GPA does is throwing away the means. This work proposes estimating and

testing the relative eucUdian distance between objects associating uncer-

tainty to the configurations. But, since it does not make much sense to

construct confidence regions for configurations, it is done for their vértices,

the objects' locations.

Inference in Generalised Procrustes Analysis is a challenge to be

faced. It was not so until today probably due to two main reasons: (i) the

multivariate distribution of the scores given by the judges is unknown (and

would be very strong the assumption of a multivariate normal distribution);

(ii) GPA is an iterative algorithm, therefore, even if the original distribution

of the scores was known before GPA, it would be very difficult to know it

after its transformations. Besides, it is worth noting that reason (i) only

makes sense to occur if ali the scores matrices are composed by the same p

variables. However, one of the main advantages using GPA is the abiUty of

deaUng with data coming from Free Choice Profiling (FCP), for instance,
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i.e., each matrix can contain its own set of variables. Remember that GPA

is methodology that compares configurations, and those configurations are

formed by dimensions rather than variables.

Therefore, intensive computational techniques are suitable for han-

dling that situation. Here, mainly bootstrap techniques are used to estimate

the empirical distribution of the desired parameters' estimators (whichever

is the original scores distribution). Thus, such a methodology can enrich

GPA's potentialities allowing estimation and decision theories to be stated.

3.2 Sampling in Sensory Sciences

Some discussion was already done in section 1.4, but here one intend

to stress some considerations and address some recommendations.

GeneraUy, statistical tests require a sample to be selected randomly

from the population it represents. This may be a complex matter but there

are additional points of design which are worth mention here.

When sampling, one must select the sample in an unbiased manner.

In practice, a so-caUed random sample is rarely completely random. Sub-

jects are usually volunteers and volunteers are not necessarily representa-

tive of the population from which they were drawn. Also, an experimenteis

method of choosing subjects is hardly ükely to be random; he or she wiU

tend to select those who are friendly and enthusiastic, as well as those who

are conveniently near the testing location. The importance of such difficul-

ties is more a matter of philosophy than mathematics; it is certainly hard to

gauge. Unfortunately, such questions are rarely considered; experimenters

seem to hope that they are unimportant. For instance, one of the common

errors in sensory work with foods is to sample from the wrong population

(0'Mahony, 1985).
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Further, members of the sample may also teU lies. This can oc-

cur when question of a personal nature (money, sex, etc) are asked. The

tendency to please the experimenter and give the 'right' answer is strong

among human subjects.

Control groups are often used to distinguish what is been estimated

(treatments, blocks, variables, etc) for any from any other effect that might

be happening. The response of non-treated experimental units is the ex-

pression of the so called placebo effect. By comparing treated units and

control a measure can be obtained, independent of any suggestion. Control

groups are often used in behavioral research and could sometimes be useful

in the sensory analysis of foods.

GeneraUsed Procrustes analysis deals with data coming from ex-

perts, trained, semi trained, untrained, consumers, etc. Furthermore, GPA

is sufficiently dynamic to treat scores produced by different scales, contain

ing different sorts of bias; each assessor can use how many and whatever

variables they want to measure the same object. By definition, GPA is not

concerned in comparing means but configurations. GPA adjusts configu

rations and identifies mains agreements and disagreements among judges.

For those reasons, GPA is more important in a Free Choice Profile (FCP)

context (WiUiams & Langron, 1984). For any other, say, 'balanced' situa-

tion, 'classicaT multivariate statistical tools, such as Principal Components

Analysis (PCA), Factor Analysis (FA), Cluster Analysis (CA), Partial Least

Squares Regression (PLSR), Multivariate Analysis of Variance (MANOVA),

etc, tend to be more adequate. Therefore, due to the huge freedom to vary

of FCP, semi trained and untrained assessors can be drawn from correspon-

dent populations, leading that to be a random effect.
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3.3 Generalised Procrustes Analysis

Lets Xi (i = 1,..., k) be k data matrices, representing A: assessors,

with dimensionality nxp,, where n is the number of evaluated objects (l =

1,..., n) and pi is the number of dimensions or attributes used by assessor

i (j = l,.--,Pi)- In each of those matrices, the Ith row represents the

coordinates of a point S\ in the space Rpi. In a sensory analysis context,
it represents the Ith object scored by assessor i. Therefore, each judge has

its own space of attributes where each object is scored; the estimate of the

object's parameter location is represented by S^'. Then, each judge is a

set of points in a vectorial space (Ferreira, 2004).

In a more general case, assessors can evaluate the objects according

their particular set of attributes, even when vocabularies differ from assessor

to assessor. Therefore, judge i can use pi attributes (number of columns of

Xi). However, for enabUng Generalised Procrustes analysis to operate well,

is better to have the scores matrices with columns forming groups of similar

attributes and is advisable to have the same number of columns. Possible

solutions are: (i) estimating the missing columns; (ii) padding them with

zeros (in centered configurations) or; (iii) modeling the problem to allow

for different matrices dimensions. Lets consider the number of attributes

as a constant p derived from p = Max(pi) 2.

Each matrix Xi is geometricaUy represented by n points (n objects).

When a Une joints the points referring to one object, through ali assessors,

the appearing polygon or configuration is called object configuration. Fig

ure 12 iUustrates an object configuration highUghting the polygons of four

objects (Oi,..., O4), evaluated by three judges.

On the other hand, when joining points referring to a same assessor,

2If, for instance p = Min(pi) was used, one would reject information, though turning
possible matrix calculations.
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FIGURE 12: Configurations for four objects (Oi, ...,04).

along ali objects, that polygon is called assessor configuration. Figure 13

iUustrates the assessor configuration highUghting the same points of Fig

ure 12, but with different polygons drawn, i.e., polygons of three assessors

(X\,X2,Xz), evaluating four objects.

3.4 Describing an object

Describing an object is when a set of assessors scores a single object

(continuous scores, in a more general case) for the intensity of its important

characteristics or attributes3. Table 5 shows a series ofscores {x^} given by

k judges (i = 1,..., k) for a given object under p attributes (j = 1,... ,p).

Here, the objective is just characterize an object, i.e., settle it in a

space formed by the axes that represent the scored attributes. Lets call

3Important attributes are those characteristics inherent to the object that are essential
for its description. For instance, one would hardly describe a concentrated orange juice
without mentioning its color, sourness and sweetness.
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FIGURE 13: Configurations of three assessors (X\, X2 e X$).

TABLE 5: Tabular representation of scores from k assessors to one object
according to p attributes (xíj).

Attributes

Assessors 1 2 P

1 Xu X12 X\p

2 £21 X22 X2p

'. '. '. ' • '•

k Xkl S*2 Xkp
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that space sensorial space (Qy). That space is a particular vectorial space

(with aU required properties) where the dimensions are sensorial attributes.

For instance, one object was evaluated by five judges, who scored

a pair of main attributes using the same scale (say, scoring from 0 to 10).

Then, consider that each attribute is an axe and the scores are points

coordinates in a sensorial space generated by those attributes (Figure 14).

As was said above, each one of the points is an estimate of the real

location of that object in that sensorial space Q^. Lets call the parametric

location Sensu and denote by $. Under a classic statistical point of view,

the parameter $ (fixed and unknown) can be understood as a consensus

or average location of that object when scored in that space by ali possi

ble assessors, i.e., by everyone that comprises the population under study.

Therefore, each single score is an estimate ^ of that sensu * itselfand, of

course, each possible consensus is a better estimate of $ (Figure 14).
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Atmtxxoi

FIGURE 14: Scores of five assessors to one object according to a pair of
attributes: generation of a sensorial space (íl*), Sensu of the object (#)
and its estimates (íj, $2) *3. *4 e $5).
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BIBLIOTECA CENTRAL - UVLR

It is worth noting that this section only didactically introduces an

inference discussion since GPA is not able to be performed with only one

object. GPA is a method of adjustment of assessors configurations, and

it does by minimizing a criterion of simultaneously reducing the sum of

squares of the distances among similar points (objects). Of course, it would

turn out superimposed points (sum of squares zero) trying to do that with

just one product. Therefore, GPA is a method of comparison and of taking

relative conclusions.

3.5 Comparing objects

In a second case, assessors compare a set of objects scoring their

main attributes in a similar way.

Let {xíji} represent the scores of k judges. Suppose they are organ-

ised in matrices (illustrated in tabular form in Table 6), in which the rows

refer to objects (l = 1,..., n), the columns refer to the descriptor attributes

(j = 1,... ,p) and each matrix contains the scores of a judge (i = 1,..., k).

Scores for the ith judge are in Table 6.

TABLE 6: Tabular representation of scores for n objects, under p at
tributes, given by the ith judge.

Attributes

Object 1 2 P

1 xm X\2i X\pi

2 X2\i X22i X2pi

'. ' • * • •

n Xnli Xn2i Xnpi

For instance, consider that three objects were evaluated by four

assessors, who scored their two main attributes using the same scale (e.g.
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FIGURE 15: Score of four assessors (i = 1,... ,4) to three objects (l =
1,...,3), with respect to two main attributes: generation of a sensorial
space (íí*), Sensu of the three objects (#/) and their respective estimates

0 to 10). Then, assuming each attribute as a axe, the scores for each

object can be seen as coordinates of points in a space spanned by those two

attributes (Figure 15).

However, as can be also seen in Figure 15, one can suspect that

both Sensus could be considered statistically equal, since their estimates

are merged (mainly regarding objects 2 and 3). In order to decide if they

are equal, one should determine the smaller distance between them that

keep they been considered distinct.

Note that one is neither talking about Procrustes analysis nor any

other statistical method yet. That is just the scene supposed that leads

to a similar reasoning when one has an answer plane coming from GPA.

In that case, one would have two (or more) axes, understood as linear

combinations of the p scored attributes and, in a large sense, k assessors

evaluating n objects.
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3.6 GPA and Inference

Prior to GPA, let Xi (i = 1,..., k) denote a (nxp) matrix containing

information (for instance, scores) about n products in n dimensions, given

by the ith assessor. So, one could say that Xi represents the ith assessor,

since ali its entries come from him/her.

On the other hand, when one defines

k

t=i

Yi (k x p) refers to the information for the Ith product, each row coming

from one assessor; ei (i=l,.. • ,k) and ei (l = 1,... ,n) are vectors of zeros

with one in the ith and Ith position (i = 1,..., k and l = 1,..., n).

Now, reconsider the Procrustes problem (2.3),

k

/(si,...,s*,^,...,^Ti,..,,riO =£||si^
i<i'

where Xi is a known nxp data matrix; $i is a scaling factor; Ui is a

translation vector; and Ti is a general transformation matrix (i < i' =

1,...,*).

Lets call X transformed, X\, the information matrix Xi after ali

transformation set in (2.3),

X\ = Sí(Xí - lu\)Ti.

In turn, one could think about the Y\ matrix for transformed con-
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figurations.

t=l

k

=£wí(**-l^)Ti. (3.2)
i=l

In practical situations, the probability distribution of the rows of

Yi is not known. Even if it was, it is not straightforward deriving the

distribution for the rows of Y{. Though Yf is function of Xi just like

Yi, the transformations of translation, scaHng, rotation, reflection etc, are

customized per row of Xi, i.e. per assessor. Then, it is not possible to

rewrite explicitly Y{ as function of Yj. Therefore, even if the distribution

of the Yi rows was known, the distribution of Y* rows was not. That is a

great motivation for using intensive computational techniques.

Automatically, it is impossible to derive algebraic expressions for the

distributions of the consensus (G), i.e. of the rows (estimates of products

locations), which is the estimator one is interested in to infer about,

k k

G={£,si(Xi-lvl)Ti =±'£xÍ.
i=l i=l

In fact, one would want to derive simultaneously one probability

distribution for each G row, in order to make inference (estimation and

decision) for the n products at once. Since it is not possible, or at least

not straightforward, to do that algebraically, resampling techniques can be

used through intensive computational methods.

3.7 Monte Cario simulation

Monte Cario simulation is usually used as a first evaluation of new

strategies and decision rules before take the risk to try them in real situa-
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tions (Miranda, 2004).

Monte Cario utilizes computational resources to generate samples

according to theoretical known distributions in order to evaluate the be-

haviour of statistical techniques for validate them, i.e., enable them to be

used in practical situations (Dachs, 1988).

3.8 Permutation tests

Permutation tests are computational efforts largely used to empir-

ically validate methods and/or test hypothesis. According to Gower &

Dijksterhuis (2004), the idea of permutation tests is to destroy the corre-

spondence between the rows of the data matrices. In the GPA framework

this means that the rows of the matrices Xi are permuted. The number

of variables p in a matrix Xi is of no importance for the permutation tests

since only the rows are permuted; it is immaterial whether the number pi of

variables in each Xi is constant. The set of ali possible permutations of N

rows of k matrices contains (n\)k permutations which will often be fax too

large a number to handle, so a much smaller random subset of permutations

is used. Each permuted data set has a particular RSS, say crs, associated

with it (s = 1, ..., 100, say). The value associated with the unpermuted

data set is called the empirical value, ao- A certain significance value, can

be attributed to the empirical value obtained. With RSS, the probability

P (as > ao) gives the significance.

The null hypothesis is that ao is not different from the other values

aa. Gower & Dijksterhuis (2004) say that when this is true it means that

GPA did not find any correspondence between the matrices Xi, but from

another point of view, it can be considered that permutating the rows within

matrices means to impose that ali products are the same, i.e. Ho: ao = as

means fio: *i = ^2 = ••• = *m where \&/ stands for the Ith product.

70



When p —value is small, say less than 5%, the empirical value ao

lies in the tail of the distribution of as values. In this case it may be judged

that there is likely to be a correspondence between the matrices detected by

GPA and/or also means to admite that, at least, two objects are different.

It is worth noting that the same investigation about the equality of

objects can be done, in a very similar way, through bootstrap procedures.

Virtual paneis can be easily resampled from the original data "mixing" the

rows for imposing equality of objects and producing a similar distribution

of RSS and computing P (as > ao). The same interpretations follow.

3.9 Bootstrapping

The technique of bootstrapping was first considered in a systematic

manner by Efron (1979), although the generality of the method means that

it was used in some particular circumstances before that time. The essence

of bootstrapping is the idea that in the absence of any other knowledge about

a population, the distribution of values found in a random sample of size

n (X\,...,Xk) from the population is the best guide to the distribution in

the population. Therefore, to approximate what would happen if the popu

lation was resampled it is sensible to resample the sample. In other words,

the infinite population that consists of the n observed values, each with

probability l/n, is used to model the unknown real population. The sam

pling is with replacement, which is the only difference in practice between

bootstrapping and randomization in many applications (Manly, 1998).

Let 9 be a parameter of interest and 9r its point estimate, called

here reference estimate. To apply the bootstrap technique one draw sev

era! (e.g. thousands) of bootstrap estimates of the particular parameter 6b,

b — l,...,B, with replacement. Such bootstrap estimates generate the so

called bootstrap distribution or empirical distribution of the estimator 9.
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Such a distribution can be used to perform bootstrap hypothesis tests and

construct bootstrap confidence intervals for the parameter or functions of

the parameter of interest (Efron, 1993).

3.9.1 Confidence regions estimation

The simplest method for obtaining bootstrap confidence limits is

called the standard bootstrap method (Manly, 1998). The principie here is

that if an estimator 9 is normally distributed with mean 9 and standard

deviation a, then there is a probability of 1 - a that the statement

[9 - z°a <9<9+z°a) =1- a,

holds for any random value of 9, where z& is the value that is exceeded

with probability f for the standard normal distribution. This statement is

equivalent to

P(ê - z^a <9 <9 +z°a) =1- a,
which therefore holds with the same probability, i.e., determining a 100(1 —

a)% confidence interval.

With the standard bootstrap confidence interval, a is estimated by

the standard deviation of estimates of a parameter 9 that are found by

bootstrap resampling of the values in the original sample of data,

a =

The interval is then

6=1

B-l

9±z° x (Bootstrap Standard Deviation)
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The requirements for this method to work are that:

(a) 9 has an approximately normal distribution;

(b) 9 is unbiased so that its mean value for repeated samples from the

population of interest is 9;

(c) bootstrap resampling gives a good approximation to a (Efron, 1979).

Percentile method (Efron, 1979) determines a 100(1 —a)% confidence in

terval setting as upper and lower limits the bootstrap estimates that contain

between them 100(1 - a)% of the ordered bootstrap estimates.

If a increasingly monotonic function exists, such that the trans

formed estimates f(9) are normally distributed with mean f(9) and stan

dard deviation 1, then the mathematical form of the transformation does

not need to be known.

Therefore,

P(f(9) -z«< f(9) <f(9) +zf) =1- a

and then,

P(f(9) -z%< f(9) <f(9) +za) =l- a.

If the function /(•) is known, one just need to apply the inverse to obtain

the confidence interval for 9. However, that function is usually unknown.

Then, one way of deriving the confidence interval for f(9) is to resample

the original sampleand find the limits that exceed § (lower limit) and 1- §

(upper limit) of the transformed values.

However, due to the monotonic nature of the transformation func

tion, the order of the transformed bootstrap estimates /(0&) is the same as

non-transformed 9b- Therefore, a/2 and 1 - a/2 limits can be set on the

ordered bootstrap estimates and no transformation is necessary anymore.
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According to Miranda (2004), there are so many other rules for con-

structing bootstrap confidence intervals, like HalTs (1992), which is based on

the same arguments of Efron (1979), but deals with residuais distribution.

3.9.2 Hypothesis testing

According to Manly (1998), bootstrap tests of significance have not

been as well studied as bootstrap confidence intervals, although they repre

sent an obvious application of the basic idea. Indeed, one way to carry out

a bootstrap test of the hypothesis that the parameter 9 takes the particular

value 9o involves simply calculating a bootstrap confidence interval for 9 and

seeing whether this includes 9q. This appears to indicate that the extension

of the theory of bootstrapping to tests of significance is trivial. However,

there is an important difference between the two applications that needs

to be recognized. This is that when carrying out a test of significance it is

important to obtain accurate estimates of criticai values of the test statistic

even if the null hypothesis is not true for the population from which the

sample being bootstrapped carne from. Basically it is a question of deciding

exactly how the null hypothesis being tested should influence the choice of

the statistic being bootstrapped.

Whatever test statistic 5 is used, a bootstrap test involves seeing

whether the value of S for the available data is sufficiently extreme, in

comparison with the bootstrap distribution of S, to warrant rejecting the

null hypothesis. Generally the test can operate in a similar way to a ran-

domization test. Thus suppose that large values of S provide evidence

against the null hypothesis. Then the observed data provide a value S\

of S, and bootstrap resampHng of the data produces another B —l values

S2,Sz,...,Sb- Ali B test statistics are from the same distribution if the

null hypothesis is true. Hence, S\ is significantly large at the 100a% levei

if it is one of the largest 100a% of the B test statistics. Or, to put it a
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different way, the significance levei for the data is p = §, where m is the

number of the statistics Si to Sb that are greater than or equal to S\.

This argument applies with any number of bootstrap samples but

generally a large number is better than a small number in order to reduce

the effect of the random sampling from the bootstrap distribution. The key

requirement for the test to be valid is that the bootstrap distribution really

does mimic the distribution of S when the null hypothesis is true.

3.10 Methodology

Statistical software R, from version 2.4.0 to 2.6.0 (R Development

Core Team, 2007), was used for ali computations, estimations, tests, pro-

gramming and analysis. Its worth noting that no significant differences

were observed in the used functions, along such versions. Specific routines

were programmed for every step of the data analysis (Appendix B).

Due to the relative the conclusions yielded by GPA and intending to

associate statistical confidence to them, a bootstrap approach of statistical

inference, for both estimation and decision processes, is suggested.

Comparing distances between possible location estimates for objects

is an issue that can be seen through either an estimation or a decision point

of view. In general, assuming a minimum significative distance around an

object estimate is delimiting a sort of sensorial confidence region (in sensory

analysis context) in Rp" space, where p* is the desired dimension. Then,

each pairwise distance could be evaluated and/or a confidence region by

itself could be an estimate of the "real" location of an object.

There are, at least, two ways of looking to this problem, they are:

(i) for each product, compute the confidence region around the consensus

point (point estimate) in order to comprise 1007%, saY 95%, of the
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possible point estimates generated by resampHng the actual scores

and then performing GPA (Figure 16a);

(ii) for each possible pair of point estimates (products), test the signif

icance of the sample (reference) euclidian distance, by comparing it

with quantiles of a distribution of euclidian distances under Hq (Fig

ure 16b).

For both situations, intensive computational techniques (as boot

strapping) are suitable due to the difficult to derive algebraically the distri

bution of such distances since the scores of each assessor suffer particular

transformations during the match process of GPA (Section 3.6).

However, the huge number of possible bootstrap tests (Cn,2) required

by the approach (ii) can turn it very hard to be performed; since it is usual

to evaluate 12, 16 or even 60 objects in an experiment (Dijksterhuis, 1995),

yielding 66, 120 and 1770 tests, respectively.

For that reason, it is preferred estimating the bootstrap confidence

regions for the sensus estimates and perform tests for the eucUdian distances

only between those products for which the equality is suspected, i.e. for

which the confidence regions touch each other.

That recommendation is made since the worst error in Sensory Anal

ysis is usually the Type H error, in the following pair of hypothesis

Ho : Both objects are equal

H\ : Both objects are different.

Under a rigorous point of view, i.e. at infinity precision, any pair of objects

is different. Therefore, committing Type I error, i.e. affirm that the objects

are different when they are not, is not a serious error. However, asserting

that two objects are the same, or at least undistinguishable according under

a specific vocabulary, requires one to be very sure about that.
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FIGURE 16: (a) Sensorial confidence region for one object comprising
1007% of the data generated by resampling one group average configuration
('mean' scores through assessors). (b) Illustration of the bootstrap distance
between supposed objects F and G.
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It is useful and important to predict the (empirical, in this case) size

of the test (a) and its power (1 —0) in some basic situations. That can be

done using Monte Cario methods of simulation.

One can compute several simulated random samples of scores and

perform bootstrap inference (estimation and decision) of GPA accounting for

the percentage of times it agrees with the "truth". Let a be the probability

of incurring in Type I error. An estimator of a (à) can be the average

percentage of times that Type I error occurs, i.e. the null hypothesis (ali

objected are the same) is rejected when it is true. Consequently, that is

an estimator of the size of that test as well. Let 0 be the probability of

incurring in Type II error. An estimator of 0, say 0, can be the average

percentage of times that, when accepting fio that decision is found to be

false, i.e. Type II error occurs. Consequently, one an estimator of the power

of that test is 1 - 0.

3.10.1 Estimation

One can estimate the confidence region for each point (object) via

bootstrap. The idea is to resample, with replacement, the information (e.g.

scores) matrices, each one representing a subject.

A discussion on the ideal resample unit is pertinent. Here, one is

considering the whole data matrix Xi as the resample unit. That agrees

with Husson et ai. (2005) when estimating confidence ellipses for sensory

profiles obtained by principal component analysis by bootstrapping. In fact,

that resample unit seems to provide suitable estimates. However, more

work is required in this issue. For instance, when one experiment has a

small number of assessors, resampling the whole matrix Xi can lead to

several identical estimates since many identical virtual paneis are going

to be formed. It can compromise the reliability of bootstrap results. Of

course, the main cause for a poor reliability in this situation is the small
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size of original sample. However, in those cases a more efficient resample

unit must be searched. When the assessors scores have high correlation

among each other, e.g. they were equally well trained, resampling rows or

matrices produces nearly the same result. That happens because the new

virtual assessor formed is very similar to a real one. If one resample rows

in a low between-assessors correlation context, the virtual assessor formed

would be fax different from the rest of the panei, leading to inadequate

estimates. In situations where the between-assessors correlation is high

enough, the practice of resampling rows would round the low degrees of

freedom problem.

ResampHng with replacement one builds up a bootstrap sample (vir

tual panei) with the same size of the original one. That process is repeated

several times and, for each bootstrap sample set up, one Generalised Pro

crustes Analysis is performed and the group average configuration com-

puted. After produced several virtual paneis, and therefore group average

configurations, an ultimate GPA for adjusting ali group (bootstrap -f sam

ple) averages and referring everyone to the same coordinate system. After

that, one can see a cloud of points "around" the sample estimates.

For those points referred to the same axes, one can determine a

1007% confidence bootstrap confidence region, i.e. containing 1007% of the

estimates for each product. When those points follow a symmetric bivariate

distribution (for instance, Gaussian distribution), it is straightforward es

timating that region through an bootstrap confidence ellipse (Figure 17a)4.

Note that, if a vector Z contains p coordinates of a point that fol-

lows a multivariate Normal distribution N(/jl, E), with mean vector fj, and

4R packagecalled ellipse bringsa set offunctions forestimating ellipses. One of them,
with the same name, fits perfectly the present situation.
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variance-covariance matrix S, then

(Z-m/S-^Z-m)-*^),

where x2(p)1S the Chi-square distribution withp degrees of freedom (John

son & Wichern, 1998). Therefore the approximated 1007% confidence el

lipse (in R2) expressed in terms of sample quantities x, y, sample means

and C, sample variance-covariance matrix, is given by the equation5

(x-x)2 , (y-yf n(x-x)(y-y) ^_2/m
+ j^/^\/-2 _ 2~7ZI77=^T. ^ Xq(2),det(C)/s2 det(C)/s2 det(C)/ssy

where x2(a) 1S *^e lOO^^o superior quantile of the Chi-square distribution

with 2 degrees offreedom; and s2, s2 and sxy are the sample variance ofx,
y and the covariance between x and y, respectively.

In more general cases, like asymmetric clouds of points, the ellipse

fails to be a good estimator for the desired bootstrap confident region. Thus,

a routine was developed and programmed in R language in order of ap-

proximate a suitable region for those cases. A very simple algorithm allows

constructing a bivariate histogram delimiting a 1007% confidence region

on the cloud of points, i.e. retaining 1007% of the points in, on the plane.

A fictitious example is give on Figure 17b for illustrating both types of

estimation.

As mentioned before, when detected intersection of regions, it is

suggested to perform bootstrap hypothesis test for deciding the significance

of the euclidian distance between the pair of points. In that test, the null

hypothesis Ho : Wi —*//, where */ and ty/ stand for any pair of objects,

is imposed by 'mixing' only that pair of products through ali assessors and

forming virtual paneis that score only those two products. One GPA is

performed for each virtual panei and the euclidian distances under the null

hypothesis are recorded. The empirical distribution of the bootstrap euclid-

5Derivation is given in A.13.
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(b)

FIGURE 17: (a) Estimate of a 95% confidence region base on bivari
ate normal distribution. (b) Estimate of a 95% confidence region base on
bivariate histogram estimator; for the same hypothetic cloud of points.
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ian distances is displayed highHghting the position of the sample eucHdian

distance. After that, the sample eucHdian distance is considered significant

if 1007% of the bootstrap eucHdian distances are less than it. The decision

process is detailed in the next section.

It is worth stressing that GPA conclusions under the proposed boot

strap inference method do not loose their relative feature. During the whole

method, what is estimated or tested is the relative location of objects and

the distance between objects in a generally scaled Rp coordinate system.

In other words, the scale is immaterial for conclusions.

3.10.2 Decision

Let 6 be the eucHdian distance between a pair of products. The sam

ple provides an reference estimate (6r) of the parametric eucHdian distance,

according to a set of assessors.

Based on that, some hypothesis can rise. Consider the following

plausible pair of hypothesis fio and H\:

*!,-°. (3.3)
Hi : 6 > 0

Hypothesis fio states that the pair of evaluated products are equal.

Of course, 6 will hardly be exactly zero. Statement (3.3) turns clear that

6 —0. In other words, the reference euclidian distance is statistically equal

to those found when the products are imposed to be the same.

That can be done by "mixing" the scores of a specific pair of objects

ali together and drawing them with replacement for composing virtual pan

eis, new scores matrices. By scores to be mixed is meant the entire rows of

the actual matrices of scores, i.e. the vector of coordinates for a product,

along ali assessors.
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After computing, say, B bootstrap estimates <5& (6 = 1,..., B) are

ordered and compared with the reference sample value ÔT (Figure 18). If the

number of bootstrap estimates nj, that is greater than the reference sample

value is small enough, the decision to reject fio is taken with significance

âb = —. Otherwise, fio is accepted. A small enough value is every value
B

less than a criticai value. The criticai value is determined by the test

and is as small as more rigorous is the test, since it is proportional to the

probability to incur in Type I error.

This way, one can identify the magnitude of the ordinary distances

or random distances between the objects (according to a specific panei)

when the products are the same. Therefore, a sample distance greater

than the most bootstrap distances indicates that the evaluated products are

distinguished (considered different) by those assessors.

d

FIGURE 18: Illustration of an empirical distribution (set of ordered values
ôb) and highlight on a possible location of the sample reference value (o>).

In order to summarize the proposed methodology, Figure 19 shows

a flowchart that displays the suggested ways of deciding to accept or reject

the hypothesis that certain pair of objects can be considered equal. It goes

from the sensory data matrices Xi to the final decision, passing through

bootstrap resampling for confidence regions and/or hypothesis testing. Ba-
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FIGURE 19: Flowchart for the proposed methodology.
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sically, the flowchart is formed by two (didactically distinct) parts: (1) point

estimation of the location of the evaluated objects in a sensory space; and

(2) estimation of sensory confidence regions and bootstrap tests. When one

decides going on path 1, conventional GPA is performed and, obligatorily

one has to return to initial data for path's 2 procedure. On path 2, bootstrap

resampling provides the generation of several virtual paneis which deter

mine the bootstrap confidence regions estimates. Then, visual inspection

for intersection of confidence regions can be done. In visual inspections for

each pair of objects is made a decision whether their are different or further

investigation can be done. When the later option is chosen, a bootstrap hy

pothesis test is performed for each pair of objects for which the equality is

suspected. It is worth noting that there is no impediment to test the equal

ity hypothesis even when there is no intersection of the confidence regions,

however that action does not counts for optimizing the process.

3.10.3 Algorithm

This section aims to summarize the proposed method in form of

algorithm. Steps are as follow:

(1) Group the information about n objects. under p dimensions, given by
k assessors in k matrices nxp;

(2) Perform GPA on sample data and compute the group average configu
ration Gs;

(3) Resample the matrices of original data forming a virtual panei. Perform
GPA in that panei and compute the group average configuration Gbi;

(4) Repeat (3) a high enough number of times B yielding Gbi, Gb2, ---, GbB\

(5) Perform an ultimate GPA on {Gs,Gb\, • •• ,GbB} and reduce the di-
mensionaHty to a low number (e.g. two) of dimensions, in order to
concentrate the variation for plotting;

(6) Construct 1007% confidence regions (not necessarily eUipses) for the
ith object (i = 1,..., n);
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(7) If no elHpses intercept each other the process stops and (besides usual
conclusions) the objects are said to be distinguishable. Otherwise, go
to (8);

(8) Test each pair of intercepted eUipses by imposing Ho of equality. It is
done "mixing" only two such rows among assessors and producing vir
tual paneis. Then, for each virtual panei produced, a GPA is performed
and the negHgible distance between such pair of objects is computed.
After a sufficient number of distance computed, the sample distance is
compared with the empirical distribution of distances under Ho. Per
centage of values greater than the sample distance is understood as an
exact p-value. Normal decisions are made confirming or refuting the
suspect of equality.

3.10.4 Practical experiments

Two practical data example were used to illustrate both confidence

region estimation and some hypothesis tests.

a) The first one was kindly available by Fernando A. R. Magalhães, from

EPAMIG/Instituto de Laticínios Cândido Tostes. It is regarded to sen

sory evaluation of gorgonzola cheese, from two distinct technologies.

Nine assessors scores eight different cheeses (4 ripening ages from each

technology) in a Quantitative Descriptive Analysis (QDA) context, ac

cording to ten attributes: appearance (Ap), amount of mold (AM),

texture (Tx), characteristic odor (CO), aroma (Ar), characteristic fla-

vor (CF), salty taste (ST), acid taste (AT), bitter taste (BT), residual

flavor (RF). Cheeses from 1 to 4 come from technology 1; and from 5

to 8 come from technology 2. Ripening ages are, respectively 30, 45, 60

and 70 days. Magalhães (2002) explore these data via univariate analy

sis of variance (ANOVA) and Ferreira (2004) analysed the same data set

through multivariate analysis of variance (MANOVA) and Generalised
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Procrustes Analysis (GPA). However, conclusions can still be enhanced

with inference techniques.

b) The second example was kindly available by Wageningen Centre for

Food Sciences (WCFS) through Garmt Dijksterhuis, Pieter Vereijken

and Eric Dransfield. It is a two experiment data set were 90 naíve asses

sors were asked to evaluate 19 (9+10) commercial semi-solid food prod

ucts purchased in The Netherlands, basically custards, yoghurts, may-

onnaises (experiment 1) and fresh creams, soft cheeses and creams (ex

periment 2). They were evaluated according to a nine attribute vocab-

ulary: dairy taste (DT), thickness mouth-feel (TMF), airy mouth-feel

(AMF), melting mouth-feel (MMF), heterogeneity mouth-feel (HMF),

creamy soft mouth-feel (CMF), fatty mouth-feel (FMF), sticky mouth-

feel (SMF) and astringent mouth-feel (AsMF).

3.10.5 Simulation studies

Inspired by practical data sets two simulation studies were held to

vaHdate the described method and estimate the power and type I error

rates of the estimation and decision procedures.

a) Based on the Gorgonzola data set, virtual paneis were simulated from

multivariate Gaussian distributions. Their parameters (mean vectors

and variance-covariance matrices) were the sample mean vectors and

sample variance-covariance matrices from the practical data set. Data

set had 720 records from an experiment of 8 products x 9 assessors x

10 attributes. The reason of simulating from Normal distributions was

that it is the more used and well known distribution and it has the good

properties.

Xi ~ N(jh = xí, Si = Si), i = 1,..., 8.
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Five hundred virtual paneis were simulated under complete alternative

hypothesis H\ : *i ^ $2 7^ • • # %N and the bootstrap inference

method was performed in order to evaluate the power rate. Percentage

of wrong decisions was accounted in each step (estimation and decision)

and in the whole process.

b) In order to better explore the behaviour of the described method, an

other simulation study was held. Six products were carefully chosen

from the Dutch dairy sensory experiment: products 1, 2, 4 and 6 from

the first experiment and products 5 and 7, from the second one. From

now on, they are referred as products 1 to 6, respectively.

In this simulation study, the partial Hq : #1 # $2 # *3 = ^4 # *5 =

$6 was imposed. For products 1 e 2, were considered the sample mean

vectors and the sample variance-covariance matrices. For pairs (3,4)

and (5,6), were considered the average of the sample mean vectors and

the average of the sample variance-covariance matrices, for each pair.

Therefore, three distinct groups wereformed: (i) $1 ^ #2; (ü) *3 = #45

and (iii) #5 = *6 (Figure 20).

W2 ~ N(fi2 = X2,S2 = S2)

W3, W4 ~ iV(/i3(4 = X3,4, Z3.4 = 5s,4)

W5, Wq ~ N(/i5)6 = X5>6,£5,6 = S5,e)

where Wi (l = 1,2,..., 6) are random vectors of length p —9.

For sample sizes of k = 5,10,15,20,50,90 assessors, five hundred repli-

cations were drawn and the described method was performed in order

to evaluate power and type I error rates.

Eight rates were measured at each replication for evaluating the be

haviour of the described method:
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FIGURE 20: Illustration scheme of the second simulation study.

i) "Power" withingroup 1 (Ri): in fact, it was estimated the probabil

ity to do not move to the second stage of the method (testing), that

is, identify that confidence regions of products 1 and 2 do not touch

each other and then they are said to be different without the need

of a formal test. It was estimated by 1 minus the ratio between the

number of interception of regions over the number of replications.

#1 = 1-

#2 = 1-

# of interceptions(l, 2)
# of replications

ii) "Type I error rate" within group 2 (R2): probability of considering

products 3 and 4 different at the first stage (estimation), that is,

percentage of wrong decisions, when the confidence regions 3 and 4

do not touched each other.

# of interceptions(3,4)
# of replications

iii) "Type I error rate" within group 3 (R$): probabiHty of considering

products 5 and 6 different at the first stage (estimation), that is,
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percentage of wrong decisions, when the confidence regions 5 and 6

do not touched each other.

r = i _ # of interceptions(5,6)
# of repHcations

iv) "Power" between groups (Ra): probability of considering the three

groups to be different at the first stage (estimation), that is, percent

age of correct decisions, when the confidence regions of the groups

do not touched each other.

# of interceptions between groups . .
R4 = 1 — — ; (3.7)

# of replications

v) Type I errorrate within group 2 (R5): since one moved to the second

stage of the method (testing), percentage of times it rejects the null

hypothesis Ho : X$ = X4 (a = 5%).

R _ 1_ # of rejections of H0 :X3 = X4
# of tests performed

vi) Type I error rate within group 3 (Re): since one moved to the second

stage of the method (testing), percentage of times it rejects the nuU

hypothesis Ho : X$ = Xe (a = 5%).

_ # of rejections of HQ :X5 = X6 , g.
# of tests performed

vii) Whole type I error rate within group 2 (R7): summation of type

one error rates of the first (estimation) and second (testing) stages

of the inference method, for group 2.

R7 = R2 + R5 (3.10)

viii) Whole type I error rate within group 3 (Rs)- summation of type

one error rates of the first (estimation) and second (testing) stages
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of the inference method, for group 3.

Rs = Rz + Re (3.11)

3.11 Results

According to the enumeration of the examples described in the

Methodology, the results and discussion follow. First, two practical experi-

ments are discussed: the Gorgonzola experiment with well trained assessors

(a) and the two Dutch commercial semi-solid foods experiments with 90 as

sessors (b).

3.11.1 Practical experiments

(a) Gorgonzola experiment (Ferreira et ai., 2007)

Figure 21, adapted from Ferreira (2004), shows the two principal

axes after Generalised Procrustes Analysis for eight gorgonzola cheeses (1

to 8), evaluated by nine assessor (A to /). Ferreira (2004) argues that,

sometimes, the location estimates for some products are so close that one

could think they are undistinguishable by the group consensus. Though

there are no so close estimates in this case one could wonder whether some

distances are significant (for instance, products 1 and 6 or 3 and 7). To

solve that problem one can, for instance, determine the confidence region

for each cheese based on their consensus estimates. Thus, 95% confidence

regions were built based on bivariate normal distributions. B = 100 virtual

paneis were formed drawing B bootstrap samples, with replacement, from

the original data set, performing B GPA's and computing their group av

erage configurations (Figure 22). Figure 22a shows 100 bootstrap estimates

(black numbers) and the sample reference estimate (white number), while

Figure 22b displays the same scene highHghting the bootstrap confidence re-
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gions and the sample referenceestimates. Both biplots bring the attributes

(described in Section 3.10.4) positioning.

#
CN _
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CO ~ 7<77gEEr
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CL 4G %

1 1 I I

Principal axis 1 (64%)

FIGURE 21: Transformed scores for eight products (1 to 8), by nine
assessor (A to I), on the response-plane of GPA.

As was said, looking to Figure 21, one could suspect that this panei

would confound products 1 and 6 or 3 and 7. That is not the same impres-

sion one has looking to Figure 22. Since there is no intersection between

eUipses, according to the proposed methodology (Figure 19), one could

conclude ali cheeses are distinguishable, with at least, 95% of confidence.

Although conclusions for this case seem to be clear, suppose one in-

sists in performing a test for the equality between the pairs of cheeses (1,6)

and (3,7). Figure 23 shows empirical distributions of eucHdian distances

between such pairs of cheeses, under the null hypothesis. They were com

puted from 500 ordered bootstrap observations of null euclidian distances.

The eucHdian distance between the pair (1,6), for them to be considered

undistinguishable, seems to be something around 0.09. Since the sample

eucHdian distance is more than 0.19 and according to the empirical distri

bution (a) of Figure 23, it is highlyadvisable do not to accept Hq : ôi$ = 0
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FIGURE 22: (a) Estimated bootstrap confidence regions for the 8 cheeses.
Bootstrapestimates are in black and the sample estimate in white. (b) Same
scene hiding the bootstrap estimates and highHghting the 95% confidence
region. Attributes position are highlighted.
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FIGURE 23: Empirical distribution of the eucHdian distances based on
500 bootstrap estimates under the nuU hypothesis. (a) Ho : <5i,6 = 0 and;
(b) Ho : (53,7 = 0
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(p-value= 0), i.e. cheeses 1 and 6 are not close enough to be equal.

Figure 23b highHghts that the minimum significant distance between

products 3 and 7 is settled around 0.17, while their sample distance is 0.33.

Therefore, for cheeses 3 and 7, one can not accept Ho : £3,7 = 0, in a

5% significance bootstrap test. Those conclusions play an important role

since products 3 and 7 are cheeses of the same ripening age, but coming

from different technologies, i.e. cheeses from those technologies seem to be

differently perceived at that age (60 days). On the other hand, cheese 1

is the 30 days old of technology 1 while cheese 6 is the 45 day-old, from

technology 2. They are of course supposed to be perceive in different ways,

but it surprises the fact that cheese 1 is closer to 6 than to cheese 5 (30

days, technology 2). Summarizing and noting the location of the desirable

attributes, one can conclude that the 8 chesses are clearly distinguished

under that vocabulary and technology 1 do present higher scores during ali

the ripening period (30 to 75 days).

In Section 3.10.1, a discussion about resample unit was initiated.

Due to fact that in this data set the assessors were well trained, and then

highly correlated, a bootstrap estimation process based on rows as resample

unit gave the same results as matrices (not published). In order to assess

panei consonance a method proposed by Dijksterhuis (1995) was used. The

idea is simply perform a PCA on matrices containing in columns aU assessor,

about the same variable, and expect the most variance to be explained

by the first dimension. C statistic was proposed by him for measuring

consonance, given by

C Ai
Tk A-'

where A» is the ith eigenvalue of XjXj, and Xj is a (nx k) matrix of

information for the jth attribute.

Figure 24 shows a bar plots of C statistic for ali 1-10 attributes
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used in Gorgonzola evaluation. However, note that Figure 24a is a kind of

misleading. It is important tó say that the numbers 1 to 10 for attributes are

related to the order presented above, i.e. 1- appearance (Ap), 2— amount

of mold (AM), ..., 10- residual flavor (RF). Its smallest bar (attribute 9)

seems to indicate a variable poorly interpreted by the assessors, but its first

eigenvalue is 70 times greater than summation of the other ones! There is

a scale "problem" here, since the attribute 10 has a first eigenvalue 1500

times the sum of the other ones. In this practical example, ali attributes

are incredibly well understood and weU scored by the assessors. It seems to

be a weak point for Dijksterhuis' C statistic. When a attribute gets close

to the ideal situation, be explained in 1 dimension, Yii=2 ^* *s tmv> *ben C

tends to infinity. In order to turn them less misleading, Figure 24b shows

the same C statistics in a logarithm scale.

Another tools suggested by Dijksterhuis (1995) are a common scree

plot for ali attributes and plots of assessors space in order to search for bad

trained. As this situation shows to be close to ideal and ali attributes were

weU scored, scree plots are expected to be similar to each other and well

designed, as can be seen on Figure 25. For ali of them, the first dimension

explains very far the most variance and their explanation is very similar.

In Figure 25 it is really hard to check that attribute 10 behaves

better and attribute 9 is the worst. In order to explore in more details

the assessors behaviour per attribute is shown on Figure 26a and Figure

26b the positions of ali assessors in attributes 10 and 9 (better and worst,

respectively). Even in the worst consonance, the panei scored quite well,

i.e. Figure 26b shows assessors very close to the first dimension, indicating

a extraordinary overall panei consonance.

Another as interesting as expected feature is the variance accounted

for on the axes. As can be seen almost ali the variations is explained in the

first component, what confirms good training.
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FIGURE 24: Bar plots for attributes 1 to 10 of Gorgonzola experiment.
(a) Highlights C statistics and (b) their logarithm.
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FIGURE 25: Scree plot for attributes 1 to 10 in Gorgonzola experiment.

(b) Commercial semi-solid foods in The Netherlands

Estimating confidence regions for products' locations can be done

as a first step of the analysis, that is, it is not necessary to perform con-

ventional GPA and then bootstrapping after a diagnostic. Figure 27a shows

the products of experiment 1 with their 95% confidence elHpse and the nine

attributes, in a biplot.

According to the proposed method, the pairs of elHpses that touch

each other are now tested for significance of eucHdian distances between

them. Then, pairs (1,7), (3,7), (4,6), (5,6), yielding, respectively p-values:

0.46, 0.58, 1 and 0.24.

It is clear in Figure 27a that assessors perceive 3 groups of products

differently. Products numbered 1, 3 and 7 are custards; products 2, 8 and 9

are yoghurts; and products 4, 5 and 6 are mayonnaises. It is interesting to

note that yoghurts are well distinguished between them, while mayonnaises

are a kind of confounded, as weU as custards.
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In turn, Figure 27b shows fresh creams, soft cheeses and creams.

Clusters here are not so well define as in Figure 27a, but the adicional

interpretation is quite interesting. Products 1 and 2 are fresh creams. Note

that they would not be well distinguished by a possible population those

assessors come from. Additionally, products 10, a soft cheese, is confounded

with them. Products 7, 8 and 9 are creams. Note that 7 and 9 are much

more similar than 8. A very far-from-everyone is product number 5, a

MozzareUa, that share few attributes with the other products. Finally, 3,

4 and 6 are cheeses probably with intermediate characteristics.

Again, products suspect of equality were tested by the bootstrap

hypothesis test algorithm. Proposed method was efficient for identifying

pairs (1,2), (2,10) and (1,10), as similar and testing them, yielding p-

values 1 (100%) for ali them. That confirms that these three products are

perceived the same way according to a specific vocabulary.

Investigating panei consonance, one can see a scene less "ideal" than

the Gorgonzola experiment. That is, assessors are less trained and therefore

agree less, in this case. It can be seen clearly on Figures 28 and 29.

In experiment 1, attribute 3 is the more unidimensional one. On the

other hand, attribute 6 presents itself a little bidimensional (Figure 28a),

even though its C is almost 5, that is, its first dimension explains almost

five times the sum of the other dimensions. Figure 28b shows the variance

explained by the first four dimensions for the nine attributes. Attribute

3 shows a high first dimension and a very low second one, what turns it

the better understood one. However, attribute 6, besides presenting the

lowest first dimension, its shows the higher second dimension, then it can

be considered to have the poorest understanding.

Figure 30a and 30b show the assessors' space for attributes 3 and 6,

respectively. Most unidimensional attribute 3 shows most of the assessors

scoring quite weU. However it can be identified assessors 74 and 82 scoring

100



TBF ©
©

CUF

© OT

UUf
AMF

-«$"
AtMF

I 1" •

FUF

• r 1

SMF

1 1

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0

Principal Axis 1 (0.5008)

(a)

í)

Q. 0

1

-02 0.0

Prinepal Axis 1(0.5136)

.0

-r-

02

(b)

FIGURE 27: Two first principal axis, highlighting 95% confidence ellipses
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FIGURE 29: (a) Bar plot of the statistic C and; (b) scree plot for the first
four dimensions, of ali nine attributes of experiment 2 of Dutch comercial
products.
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worst, that is, more bidimensional.

On the other hand, on Figure 30b can be seen that several assessors

are scoring attribute 6 in two dimensions. Assessors 64 and 82 (again) are

highlighted as the most discrepant ones.

In experiment 2, attribute 2 is by far the better understood, the

better expressed in one dimension. Its C is greater than 20, i.e. its first

dimension accounts more than 20 times the other ones (Figure 29a). The

same behaviour of attribute 2 is reproduced by Figure 29b, where it can be

seenit has the highest first dimension and the lowest second dimension. On

the other hand, although Figure 29a shows attribute 5 to have the lowest

first dimension, Figure 29b reveals attribute 9 to leave the great amount of

variation to be explained by the second dimension. Therefore, attribute 9

can be considered the more two dimensional attribute.

For the most unidimensional attribute (2), Figure 31a shows asses

sors 46 and 69 as the most bidimensional ones when scoring that attribute.

In turn, when scoring attribute 9, the most bidimensional one (Figure 31b),

several assessors seem to understand it wrongly, highlighting assessors 26,

61 and 78.

It is interesting comparing Figure 26b and Figure 31b. Note how

assessors are better trained in Gorgonzola's experiment. By the way, in

experiment with comercial Dutch products, the assessors are not specifically

trained. Even if they were, training 90 assessors would be a very harder

task than training nine.

3.11.2 Simulation studies

a) Along500drawings from multivariate Normal distributions, with

parameter coming from the Gorgonzola data set, the behaviour of the de-

scribed method was stable and well defined. Since the scores have come
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from well trained assessors, mean vectors were almost unbiased and vari-

ances (and covariances) were naturally small.

In such study, only power could be evaluated, since simulations were

under alternative hypothesis H\ : *i ^ #2 # ••• # *n- Practical variance

was so tiny that, affcer 500 drawings, no wrong decision has been made,

yielding 100% of power estimate. Figure 32a shows a biplot randomly

chosen to give an idea of the distances between products, sizes of variances

and the decision made.

Another interesting aspect to pay attention is the behaviour of the

Variance Accounted For (VAF) the components along the 500 replications.

Figure 32b displays box plots of the VAF for ali components and the sample

variance accounted for the estimates. Again, the standard error of that

estimator was so small that the box plots looked like bars, but still contain

the sample estimate, just like expected.

Future works can contemple higher variances in order to insert un-

certainty to the process and induct some type II error rates in simulations

under complete H\. However, it is worth knowing that the proposed method

presents high power rates in a good training practical-like context. Such

high power rates can, however, induce type I error rate greater than the

nominal for cases under Ho.

b) Partia! Hq is a usually a tough situation for tests. It is not rare

for a test to present type I error rates higher than the nominal. For that

reason, the bootstrap inference method was submitted to such demanding

situation in order to evaluate its behaviour.

Table 7 presents power and type I error rates for both estimation

and decision stages (R\ to R&) of the described method for the case under

partial Ho, for paneis of sizes 5, 10, 15, 20, 50 and 90 assessors.

For this simulation study, bootstrap hypothesis test revealed to be
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Table 7: Power and type I error rates {Ri to Rs) for both estimation and
decision stages, under partial Ho, for virtual paneis of sizes 5, 10, 15, 20,
50 and 90.

Panei size

Rate 5 10 15 20 50 90

Ri 0.8200 0.8320 0.8700 0.8981 0.9923 1.0000

K2 0.4660 0.3460 0.2980 0.2731 0.3359 0.3333

H3 0.5320 0.4800 0.4220 0.4596 0.3359 0.3333

R4 0.9640 0.9980 1.0000 1.0000 1.0000 1.0000

Rs 0.0150 0.0183 0.0085 0.0238 0.0174 0.0000

Re 0.0000 0.0154 0.0104 0.0178 0.0174 0.0000

Rr 0.4740 0.3580 0.3040 0.2904 0.3475 0.3333

Rs 0.5320 0.4880 0.4280 0.4692 0.3475 0.3333

conservative6, since it presented type I error rates (R5 and Rq) under the

nominal levei (5%). In addition, only random variations seemed to happen

along the sample sizes, what suggest that the test respects the nominal

levei (and is conservative) even for small sample sizes.

On the other hand, decisions based on the estimation stage revealed

to be very liberal7, that is, power rates are extremely high (R\ and #4),

easily reaching 100%. For that reason, type I error rates of this same stage

are very greater than the nominal levei (#2 and R$). However, type I error

rates are usually greater than the nominal levei under partial Ho (Borges,

2002; Santos, 2000). In addition, power rates increased and type I error

rates decreased as the sample size (k) increased, as expected.

Rates R7 and R& consider the whole type I error rate, that is, error

in the first and (plus) in the second stage. Note that, though those rates

decrease along sample increment, they are still too high at the biggest

sample size (k = 90). It suggests that the whole inference method is liberal,

that is, its type I error rates are greater than its type II error rates. That

6Conservative test: which presents type I error rate less than the nominal levei (a).
7Liberal test: which presents typeI error rate greater than the nominal levei (a).
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is not a problem itself, since type II error is the worst type or error in most

cases. It is due to the fact that two products are never exactly equal.

However, some attitudes can try to round such problem. If the con

fidence regions were set to higher confidence, more tests will be required, re-

ducing the type I error rate. Further studies must be performed associating

a kind of protection to the confidenceregions. For instance, the Bonferroni

protection, where the confidence are set as 1 - a*, where a* = oc/Cn,2-

Associating estimation and testing stages for decision can be quite

interesting since the prior seems to be liberal and the second, conservative.

Nevertheless, empirical tests (not published) suggest that the bootstrap test

remains conservative even when performed for pair of products that do

not have interception of 95% confidence regions. Therefore, associating

estimation and testing stages enables one to reduce the number of possible

tests (Cn,2) and prevents the whole test to be conservative.

In order to evaluate the stability of the process, the variance ac

counted for principal components, as well as their standard deviations, were

computed along the replications for ali considered sample sizes (Table 8).

Estimates of the variance accounted for were coherent since the smallest

sample size. Standard deviation of such estimates tended to decrease as

the sample size increased, as expected.

Sample size 20 yielded the more discrepant and variable estimates

of the variances accounted for principal components. Such estimates were

taken as randomly diverging from the expected values.

Due to small empirical standard deviations and coherent estimates,

described method was considered efficient to estimate variances accounted

for principal components.
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Table 8: Variances accounted for the first five principal components and
their standard deviations along the simulated sample sizes.

Variance Accounted For (VAF)
k PCI PC2 PC3 PC4 PC5

X s X s X s X s X s

5 0.47 0.05 0.24 0.04 0.14 0.02 0.09 0.02 0.05 0.01

10 0.47 0.03 0.23 0.03 0.14 0.02 0.09 0.01 0.06 0.01

15 0.47 0.03 0.23 0.02 0.14 0.01 0.09 0.01 0.07 0.01

20 0.43 0.14 0.20 0.07 0.13 0.04 0.08 0.03 0.06 0.02

50 0.47 0.02 0.22 0.01 0.14 0.01 0.09 0.01 0.07 0.01

90 0.47 0.01 0.23 0.01 0.14 0.01 0.09 0.01 0.08 0.00

3.12 Discussion

Practical data sets were suitably analyzed. Gorgonzola cheeses show-

ed to be well distinguished by the expert panei, both by technology and

ripening age. Bootstrap hypothesis tests confirmed the products are dis-

tinct and more confident management decisions were allowed to be taken.

Assessors agreed more about residual flavor of the cheeses and had the

poorest performance scoring bitter taste.

Two Dutch experiments of commercial foods were analyzed success-

fully as well. Experiment 1 distinguished groups of yoghurts, custards and

mayonnaises, while experiment 2, with the same assessors and attributes,

grouped fresh creams, soft cheese, creams, the Mozzarella and other cheeses.

For products evaluated in experiment 1, the 90 assessors scored more unidi-

mensionally attribute airy mouth-feel, while they were less consistent scor

ing the creamy soft mouth-feel. On the other hand, the same panei had

a different performance evaluating products of experiment 2. They agreed

more about thickness mouth-feel and had the poorest performance scoring

astringent mouth-feel. In both experiments, some assessors can be identi-

fied as "outliers" and must be re-trained or removed from the panei.

From simulation studies, described method showed to combine a
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liberal first stage (estimation) with a conservative second one (testing), in

the decision process. According to need of protecting against type I or type

II error rates, one can set the confidence of value of the regions suitably

or ever suppress the estimation stage in order to allow more or less tests.

Further works must be done about that issue.

Variances accounted for the principal components were precisely es-

timated, suggesting stability, even in small sample sizes.

One can note a clear behaviour along ali sample sizes: high power

in both estimation and testing stages; high type I error rates in estimation

stage (liberal) and small type I error rates in testing stage (conservative).

Such behaviour seems to be slightly improved along the sample size incre-

ment. However, a protection against the liberality of the estimation stage

might yield better results and keep avoiding testing ali possible combina-

tions of products. Front of those results there is not a clear cut-line for the

sample size, though the big sample, the better. Well trained assessors (less

bias and small variances, as in Gorgonzola experiment) are as important

as big sample sizes. However, the method seems to behave well for expert

paneis and samples sizes greater than 20 to semi-trained people.

For ali cases, the best sample bootstrap resample unit was the whole

matrix. However, when the number of panelists is very small, rows can

be treated as resample units in order to increase the number of possible

virtual paneis, but only in those cases where the variance between assessors

is equivalent to the variance within assessors.

Bootstrap GPA inference routines programmed in R language showed

up to be very computational demanding. For instance, each replication of

the simulation study with 90 assessors, has demanded, in average, 240 hours

(in a Pentium III, 512Mb RAM and Windows operational system). Further

works must be done in order to improve the efficiency of such routines.
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4 FINAL CONSIDERATIONS

After several studies (simulations, algebraic and practical experi

ments) performed in Procrustes analysis for estimating missing cells and

inferring about the population of focus, it is clear that Procrustes problems

are a rich field to be explored and can contribute greatly to Sensometrics.

Putative values can lead to local minima in missing values estima

tion and therefore must be suitably chosen, for instance setting to zero for

centered matrices. Algorithm efficiency and more suitable constraints also

must be well studied for estimating missing cells. Two-sided eigenvalue

problems with both matrices positive semi-definite seems to be a border

to be passed for a better development of Procrustes problems with general

transformation. As important as such algebraic derivation is the practical

interpretability of such transformation, what can contribute even more with

sensory experiments.

For the first time an inference procedure is described for Procrustes

analysis. However, it has to be discussed and improved both in the esti-

mation/decision process and in the programming efficiency. Optimization

techniques must be used to refine the codes and turn the whole process

lighter. After that, ready-to-use computational packages will be able to

help several sensometricians, statisticians and food engineers world wide

(preferably in open code languages). At least, (another) first step has been

done in order to improve and extend such a classical analysis as Procrustes.
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APPENDIX A - PROOFS

(A.1): Leat squares estimator ofTunder no restriction is T= íX[Xi J X[X2.
Proof: Let

X2 = XxT + e,

where e is a random vector of residuais.1

Then, if e is distributed according to some multivariate distribution

with mean vector $ (vector of zeros) and covariance matrix a2I, and letting

XiT be constant, follows that

E[X2] = E[XiT + e]

= E[XiT\ + E[e]

= XiT.

One estimator of T can be derived by minimizing the residuais sum

of squares in relation to £?[-X*2]:

||*2 - E[X2]\\ = (X2 - E[X2)) {X2 - E[X2))'

= (X2-XiT){X2-XiT)'

= (x2 - XiT) {x'2 - rx{)

= X2X'2 - X2T'X[ - XiTX'2 + XiTT'X[

= f{T)

xIn that case, X\ is a fixed (given) matrix and X2 is random matrix.
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df{T)
dT

= 0

•X[X2 - X[X2 + 2X[X1f = 0 =»

=>2X'lXif = 2X[X2

=*f =(x'iXi)~l x[x2.-1

(A.1)

(A.2):
k

Y, \\»i(Xi - H)Qi - sAXi. - lu^Qi, =^^11^(^-1^)^-011
i=l

Proof: Let Sí(Xí - lu^Qi = X? and Sí>(Xí> - lu^Qv = X?,. Since

£x; = 5>;,then

E||X?-jrç|| = ELE?-illW-*;)ll
2

feEti 11*711 - 2SL EJU^W^) + fcE?=i P?l
2

2fc Eti 11*711 - 2EL ELi M*í'*7)
2

k k k

kJ2\\xn-Í2Íltr<<xi'xi')
t=l t=l i'=l

i<i'

fc / k k y

=*En*"ii-*'- E^E*?
i=l \t=l t'=l >

fc fc

=*£wii-£iwii

fc

t=l

= fe E 11**11-
EL txj

*EII*"-*1
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kJ2\\si(Xi-iy?i)Qi-G\\
fc=i

(A.2)

(A.3): Eti \MXi - lu^Ti - G\\ = (^EL IM*í - lu})!} - Gi\
Proof: From (2.5) and (2.7), yields

1 *

i=l

_T,LiSi{Xi-lu!i)Ti-kGi
k

E?yjSi'(Xj> - lu^Ty + SjjXj - lu^Tj - kGj
k

(fc - l)Gj + Sj(Xi - lu^Tj - kGj
k

Si(Xi - lu^Ti - Gi

Using such result,

fc fc

£ \\Si(Xi - 1i4)Tí - G\\ =£ UM* - lti{)r4 - Gi] +(Gi - G)\\
i=i t=i

fc

= 5Z hm*< - ^w - G*] - (G - G*)n
i=i

=±\\MXi -ufln -Gi] -[«W-y*-Cij

•3)
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(A.4): \\(Xi - Xui)Ti - Gi\\ = WXuiTi - (XíTí - Gi)\\. Proof:

W(Xi - Xui)Ti - Gi\\ = \\XtTi - XuiTi - GiW

= WXuiTi- XíTí + Gi\\

= \\XviTi-(XiTi-Gi)\\ (A.4)

(A.5): H^T, - {XíTí - Gi)W oc tr [(^«OCnTj) - 2X'ui[XiTi - Gi)T{\.

Proof:

WXuíTí - (XíTí - Gi)\\ = \\liXU - T[X[ + G;||

= tr[(XuiTi - XíTí + Gi^XU - TjAj + G{)

= tr^XviTiTiXui —XuíTíT^Xi + XuíTíGí —XíTíT^X^ + XíTiT^Xi

- XíTíG\ + GiTÍX^ - <?#*{ + GiGW

oc £r[J\UiTiTi.X'Uj —XUiTiTiXi + XujTíGí —XíTíTjX^ + GiTiXui]

oc tr[Xuiri7;,X;i - 2XíTíTIX'uí + 2Gi7í*;i]

oc trK^^JTiTÍ - 2X;íXí7í7;' + 2X^27)

oc tr[(X'uiXUi)TiT; - 2X'vi(XiTi - G<)2j] (A.5)

(A.8): Minimization of ^(A^J^T - 2X'uiY] over sr, subject to Xui -

Em=l «mCim^ yields Vr =EÍL «mC^Cim )(**•>.)» r = 1,. .., M.

Proo/: First, let J\Tuir = Z.

^ EL*ii*ii ... ELxi^p >

\ ^i=l ^nt^tl ••• 2->i=l xniUp /
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So,

tr(X'uiXuiT) = tr(X'uiZ) = x'uiz =

=( Xhjl X*2J2 '»AfjM 0 ... o

/ *.,. \»U1

ZÍ2J2

Zímjm

0

M

= XixjlZilJl + Xi2J2ZÍ232 + •••+ XÍMJMZÍM3M = 2-*/ Ximjm2imjr

Since,

d

ÕXr
\XÍrjrZÍrjr) — Q fotrjr / „X*rpfypjr)

ÕXr
p=l

m=l

^ / 2 \= ^"(^Vir^trl^ilJr +•••+Xirjr^jrjr + •••+ XÍrjrXÍrP^jpjr)

= ^iritjxjr + ... + 2a;irjríjrjr + ... + xirptjpjr
p

~ / JXirptjpjr + Xirjr*jrjr
P=l

and since EÍLi^Wm^imjm = EÍL***»^*» for *he missing cells that
are in the same row of Xirjr, for each m holds,

p

XÍrjmZÍrjm ~ Xirjm / ^Xirjp^jyjm.
P=l

Jp — 3r

"n~~\XÍrjmXÍrjr^jrjm) ~ Xirjmhrjr
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Therefore,

M M
d

aT 2^f XWm2Wm —/ „̂ rptjpjr +Xirjrhrjr + 2-*l Xir3rn^jrjrdxT

Since T is symmetric, that is, tjmjr = tjrjm, and using the indicator

function (eíreim), yields

a Õ M M
•£—tr(XuiXUiT) = ^— 2^ ximjmzimjm —22^, Zirjm(eírejm)íjrj'm• (A.6)
dx da:r

m=l

On the other hand.

2tr(X'uiY) = 2x'uiy =

—2 y xíu! '12.72

M

m=l

Xil\í3M o ... o

3/»2j2

o

V o y

—2 2^ XtTnJm2/tTnJm'
m=l

Then, the derivative in relation to Xirjr, or just xr is

Q O Aí

—2ír(X;iy) = —2 5^ ximjmyimjm = 2»*,*. .*<pjm «.c^ )tJrJm. (A.7)
r r m=l
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Finally, from (A.6) and (A.7), yields

JLtr(X'uiXUiT-X'uiY) =0
M

22/irjr = 2 2_^ Xir3m\eireim)^3rjm
m=l

M

m=l

M

2/r = 5Z xm(eíreim)íjrJm. (A.8)
m=l

(A.9): The least squares estimator of (2.18) is X^ = YT_1.

Proof:

f(Xrui) = trl(X<XrUi)T-2XtiY}
df(XrJ Õ(X<Xrui)T dXfr =

dXL dXL dXL

2XLT - 2Y = 0

Xrui = YT~l (A.9)

kut-

1-1

(A.10):

Minimizing \\sí(Xcí + X^Ti - Gi\\ is minimize tr[(X<X^)T - 2X£Y].

Proof:

Wsi&d + X^Ti-GiW^

= IISiXàTi + síX^Tí - Gi\\

= WsiXZiTi-(Gi-SiXciTi)\\

= ítKsíAÍTí - (Gi - «^TOftsi^r, - (Gi - «i*^))]

= *t[(«í3ÍXS -G'i + síTÍX^SíX^í -Gi + SiXaTi)]
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= trlsffiXÍXÜTi - SíTÍX<Gí + sfàX&XaTi - siG'iXTuiTi+

+ GíGí - SiGiXãTi + SiTlX^X^iTi - síT^X^Gí + s^TlX^XãTi]

From now on, lets consider only those term that depend on X^,

since minimizing them is minimizing the whole expression.

oc ír[Sj7iXuiXuiTi —síTiXuiGi + SíT^X^XcíTí —SíG^XuíTí + SíT^X^X^Tí]

= tr^X^X^Tl + 2s2iX<XciTiTl - 2siX^iGiT'i\

= trlsUX^X^TiXl - 2síX<(Gí - SiX^T-)^]

= trl(X<XruJTiT! - 2XT2s;lGi - XtTtfR

= trl(X<Xrui)T-2XtiY}. (A.10)

(A.11): Ti = ^(X^X^X^Gi.

Proof:

f(Ti) = WsiXciTi-Gi\\

= tr [(siXaTi - Gi)'(siXciTi - G{)]

= tr [(síTIX^ - G^SiXaTi - Gi)]

= tr [síT-XciXcíTí - síT^X^Gí - SiGiXãTi - GjGi]

= tr [slTlX^XaTi - 2siTlX'ciGi - G^d]

g/P» = Q
dTi

-25^^ + 25^X^ = 0

SiXçid = SiXçiXçiTi

ti = -(X^Xa^X^Gi (A.11)
Si
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(A.12): EL 11**5^ " «PMH = s'(kDiag(S) - S)s

Proof:

k

53115^^-5^*^11 =

k

-kJ^WsiXcW-GW
i=l

fc

= fc 53 tr^TlX^XàTi - 2síT;X'*G +G'G)
i=i

fc fc fc

= fc 53s\trVÍX5X^Ti) - 2fc53 SitrtfXZG) +fc53 tr(G'G)
i=\ t=i i=i

fc fc / fc \

=fc 53 5?tr(7p^*^) - 253 5iír (tíx* 53 *,*s,3;,) +

53 svXtfli* J (53 Si'Xc\>Ti'
t'=l / Vsl

fc fc

= fc 53sjtHTiX^X^Ti) - 25353wtr(2ÍX5XS,2V)+
i=l t=

fc fc

i=l i'=l

fc fc

= fc53 fapiXSXàTi) - 5353«,a</ír(2íJCS^i^)
i=l i=l i'=l

fc fc

= 53[fc5?ír(7?X;-*dri) - 53wtrPiXSXà.Te)]

i=l t'=l

+ tr

t=l i'=l

fc fc

i=i í'=l

fc fc

= 53l(fc - i^mtíxZxiPí) - 535i5i,ír(^XSX-,riO]
i=i iV»
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fc

=s2(k - l)ír(7íJCS^ri) - 5] navtrfâXZXàTi.) + ...
i'jíl

k

+ s2k(k - l)tr(TÍX'ckX*ckTk) - 53 8k8i.trÇríXcíXàTi')
i'jík

= s'(kDiag(S) - S)s (A.12)

ía i3V (x - x)2 , (y - v)2 2(* - s)(y - ?) < v2 ^
^ °;- deí(C)/52 +det(C)/sl det(C)/sxy ~XaK)

Proof:

(z-n)'Y.-l(z-tx)^X2{2)

X~IH \ í cri axy \ í x-fix
y-Vy) \°xy o% ) \ y- My

1 I X-px \ I °l -°xy \ í x- Px i 2

I f

J. I X X \ \ Sy ~SXy i / X — X

det(C) \ y-y I \ -Sxy s2x J \y-y

~XÍ(2)

~ xS(2)

•j^êjfr - x?s2y +(y - y)2s2x - 2(x - x)(y - y)sxy <j£(2)
(*-*)2 + (y-y)2 _2(*-g)(y-fl <y2(2) (A 13)

deí(C)/52 + deí(C)/52 det(C)/sxy ~Xq^} ^ló)
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APPENDIX B - R FUNCTIONS

Main R functions used along the thesis are briefly described below.

R codes are not published because the need of optimization in performance,

but they will be turn public as soon as such improvements occur.

• bootGPA.cr (X, ortho=TRUE, sf=TRUE, resmpl=100, conf=0.95)

Performs generalised (or ordinary) Procrustes analysis and builds 1-

a bootstrap confidence regions for ali evaluated objects. It allows

orthogonal or general transformations, with or without scaling and

enables the user to set the resample size and the confidence of the

region.

• bootGPA.tst (X, a, b, resmpl=500, plot.result=TRUE)

Performs generalised (or ordinary) Procrustes analysis and a a boot

strap test between two products a and b (Ho : a = 6). It allows an

empirical histogram to be constructed and the empirical p-value is

shown on the console output.

• missingGPA (X, ortho = TRUE, sf = TRUE, tol = le-4, plotresult

= FALSE, plotiterat = FALSE)

Performs iteratively generalised (or ordinary) Procrustes adjustment

and missing cells estimation (estimation/minimisation). It allows or

thogonal or general transformations, with or without scaling, enable
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the user to set the convergence tolerance, and plot either the GPA

biplot or the residual sum of squares convergence through iterations.

• histMv (a, boot= TRUE, levei = .95, ellip = FALSE, point = FALSE,

pty = 20, xn=c("X"), yn=c("Y"))

Builds bivariate histograms for data sets form both bootstrapping or

not. The confidence can be set. An ellipse can be draw on the plot

if desired. The original points can be draw or not and the character

can be chosen, as well as the labels of the axes.

• bootGPA (X, attrib = c(seq(l:dim(X)[2])), ortho = TRUE, sf= TRUE,

resmpl = 100, conf = 0.95, rows = FALSE, plotresult = TRUE)

Performs generalised (or ordinary) Procrustes analysis and the whole

described inference procedure. It allows orthogonal or general trans

formations, with or without scaling and enables the user to set the

resample size, the confidence of the region, if rows must be the re

sample units, and draws the final biplot with original attributes.

• p.cons (X, attrib=seq(l:dim(X)[2j), plotpr=FALSE, plotas=FALSE,

scree=FALSE, bar. C=TRUE)

Performs Dijksterhuis' panei consonance test. It plots either product

space, assessors space, scree plot or the bar plot of statistic C, with

original attribute labels.
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