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ABSTRACT 

 

Many remote sensing techniques have been developed for forest change 

detection but there is no optimal method without limitations that can be applied 

in all landscapes. In the Brazilian savanna biome is not different, the analysis 

and quantification of human induced deforestation in Cerrado areas proved to be 

a challenge regarding to the spectral information. This study was divided in two 

parts, the first one exploring the spectral and temporal information of land cover 

changes, and in the second we used meaningful information of these changes to 

discriminate human induced from seasonal changes by different machine 

learning algorithms. Chapter one evaluated the image data availability in the SF9 

basin sampled areas based on cloud and shadows cover, and used filter-based 

feature selection methods and object-based image analysis to also evaluate 

Landsat 8 bands. These feature selection methods took red and short wave 

infrared bands as promisor bands to detect deforestation in savanna biome. In 

temporal context, free cloud cover presented good change detection accuracies 

even for distinct image frequencies. Chapter two used the promisor bands 

previous evaluated to compute spectral indices, which create an input dataset to 

three machine learning algorithms, Artificial Neural Network (ANN), Random 

Forest (RF) and Support Vector Machine (SVM), and also assessed individually 

spectral channels indices in all detections. Random Forest demonstrated the best 

results in test phase with overall accuracy of 92%. The short wave infrared 

spectral channel as well as the tasseled cap brightness and greenness 

transformations indices had positive influence in all machine learning 

algorithms. Thus, this study emerged new options to savanna change detection 

through a database exploratory analysis and different machine learning 

algorithms. 

 

 

Keywords: Land cover changes. Cerrado. Exploratory analysis. Machine 

learning.



RESUMO 

 

Técnicas em sensoriamento remoto vêm sendo desenvolvidas para se detectar 

mudanças em florestas, porém não há um método ótimo, ausente de limitações, 

que se aplique em qualquer tipo de paisagem. O bioma de savana brasileiro não 

é diferente, a quantificação de mudanças em áreas de Cerrado tem se tornado um 

desafio no âmbito espectral. Este estudo foi dividido em duas partes, a primeira 

através de uma análise exploratória de mudanças na cobertura do solo, e uma 

segunda que se utilizou de informações promissoras da primeira parte para 

discriminar mudanças decorrentes da ação humana de mudanças naturais através 

de algoritmos de aprendizado de máquina. O capítulo 1 avaliou a disponibilidade 

de imagens de satélite de áreas amostradas na Bacia SF9, e também aplicou 

métodos de seleção de atributos e segmentação multi-data para avaliar as bandas 

espectrais de imagens Landsat 8. Estes métodos selecionaram a banda do 

vermelho e a banda do infravermelho de ondas curtas como promissoras para 

detectar mudanças no Cerrado. Em relação à informação temporal, a total 

ausência de nuvens e sombras demonstrou boas acurácias mesmo em diferentes 

frequências de imagens. O capítulo 2 levou em consideração as bandas 

promissoras do capítulo 1 para o cálculo de índices espectrais, onde estes índices 

serviram como base de entrada para três algoritmos de aprendizado de máquina, 

Redes Neurais Artificias (RNA), Random Forest (RF) e Support Vector 

Machine (SVM). A importância individual de cada índice espectral também foi 

avaliada para todas as detecções. O algoritmo baseado em árvores de decisão 

Random Forest, gerou os melhores resultados na fase de teste, com acurácia 

global de 92%. O canal espectral do infravermelho de ondas curtas, assim como 

os índices transformação tasseled cap brightness e greenness se mostraram 

importantes no desempenho de todos os algoritmos avaliados. Assim, o estudo 

oferece novas opções para a detecção de mudanças no Cerrado através de uma 

análise exploratória das mudanças e avaliação de diferentes algoritmos na 

detecção.  

 

Palavras-chave: Mudanças na cobertura do solo. Cerrado. Análise exploratória. 

Aprendizado de máquina. 
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1 GENERAL INTRODUCTION 

 

The Earth surface is constantly changing when it comes to changes in 

land use and land cover. Global demand for food reflects the deforestation of 

preserved forests being replaced by croplands, pastures and urban areas (GIBBS 

et al., 2010). This scenario directly affects the biodiversity of biomes, climate 

regulation, carbon stock, and water resources (FOLEY et al., 2005; HANSEN et 

al., 2013). Therefore, land use and land cover monitoring programs have become 

essential  for understanding the Earth’s surface transformations, reporting and 

planning national needs, international treaties, and supporting scientific research 

(WULDER et al., 2008). This important information reflects the need of 

continuity and precision of such programs to support decision makers (COPPIN 

et al., 2004). 

Remote sensing change detection provided many different methods over 

the past decades and have been reviewed by several authors (BANSKOTA et al., 

2014; COPPIN et al., 2004; HUSSAIN et al., 2013; LU et al., 2004; 

TEWKESBURY et al., 2015; ZHU, 2017). The method accuracy is dependent 

on several aspects and there is no optimal algorithm that applies to all purposes 

(CHEN et al., 2012; COPPIN et al., 2004; HUSSAIN et al., 2013; 

TEWKESBURY et al., 2015). Among these circumstances, the seasonal 

differences caused by solar angle differences and phenological changes in 

vegetation are considered sources of noise for the majority of the change 

detection algorithms and must be avoided by selecting images from the same 

season or choosing methods unaffected by seasonality (ZHU, 2017). These 

phenological changes in vegetation are typical in the Brazilian tropical savanna, 

the Cerrado (HILL et al., 2017). 

Cerrado represents a challenge to change detection methods based on 

remote sensing imagery. In addition to seasonal effect upon the biome, the major 
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conversion and fragmentation by land use change, and high vegetation 

heterogeneity with gradients of complex woody and herbaceous structure, makes 

it an appeal to change detection (HILL et al., 2017). According to Brasil (2015), 

almost 50% of the original 2 million km² Brazilian Cerrado were converted to 

agricultural land use until 2011, being the second Brazilian biome with more 

human-induce changes. Most of this large land conversion is due to agriculture 

expansion, wood predatory extraction, depletion of natural resources, and low 

rate of protected areas, where just 7.44% of the biome is protected, and only 

2.91% are fully preserved (BRASIL, 2011). 

Thus, Cerrado change detection background motivates the later 

chapter’s assumptions where a better understanding of the change phenomenon 

at the biome is required to support change detection studies. 
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2 LITERATURE REVIEW 

 

2.1 The Cerrado biome 

 

Savannas ecosystems comprises 20% of the global terrestrial surface 

spread at the Earth’s tropics, mainly prevalent in Australia, Africa and the 

Americas (LEHMANN et al., 2011). In Brazil, the Cerrado tropical savanna, is 

the second largest biome in the country with 2 million of square kilometers 

approximately occupying 25% of the national territory, particularly in the States 

of Goiás, Mato Grosso do Sul, Mato Grosso, Tocantins and Minas Gerais 

(BRASIL, 2015). 

 The Brazilian savanna has the richest flora among the savannas in the 

world with a considerable number of endemic species, and it is considered a 

hotspot for conservation of biodiversity in Brazil (KLINK; MACHADO, 2005; 

MYERS et al., 2000).  

Cerrado is unlike any other large savanna in the world (HILL et al., 

2017; RATTER et al., 1997), since it combines an unique vertically structured 

mosaic of plant formations (FERREIRA et al., 2003). The Cerrado stricto sensu 

is the mainly formation, which better illustrate the savanna biome with sparse 

and short twisted trees. Woodland areas are represented by forest formations 

with dense canopy cover, known as Cerradão, riparian forests, and wetlands 

formations or Veredas, and grasslands completes the Cerrado mosaic (FIGURE 

1) (RIBEIRO; WALTER, 2008). The combination of this very diverse woody 

physiognomy and highly biodiversity species composition make it a biodiversity 

hotspot with the richest flora among the savanna biomes (HILL et al., 2017; 

KLINK; MACHADO, 2005). The Cerrado territory is also included in the three 

biggest water basins in South America – Amazônica/Tocantins, São Francisco 
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and Prata – resulting in a significance influence on water resources (BRASIL, 

2011). 

 

Figure 1 – The Cerrado biome. 

 

Source: Adapted from Ribeiro & Walter (2008). 

 

Peel et al. (2007) describes the Cerrado climate as Tropical savanna 

(Aw) with dry winter and wet summer, with annual temperature around 22-

23°C. Approximately 90% of the rains are concentrated from October to April 

with annual precipitation ranging from 1,200 to 1,800 mm. Dry season is quite 

distinct with monthly precipitation reaching zero millimeters. This drastic 

seasonal rainfall change results in a wide range of adaptive phenological 

strategies as leaf drop in Cerrado trees. 

The Cerrado vegetation species developed strategies in order to 

overcome water scarcity.  Most of the woody species are evergreen or deciduous 

formations, these last types of vegetation are represented by total or partial leaf 

fall during the dry season (FERREIRA; HUETE, 2004) 
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2.2 Remote sensing and vegetation 

 

Among a collection of applications, the remote sensing science extracts 

information of a target on Earth’s surface through a set of data provided by a 

sensor placed at an airplane or satellite (SCHOWENGERDT, 2007). The solar 

energy is the main source of energy in passive remote sensing. It can be 

absorbed, transmitted and/or reflected by a target where the ratio reflected 

energy to the total incident on a same target is quantified by the reflectance 

measure (LILLESAND; KIEFER; CHIPMAN, 2008). 

Sensors are responsible to convert radiance received from a target into 

digital images or remote sensing images (SCHOWENGERDT, 2007). These 

sensors can be on board of airplanes or satellites and their main characteristics 

are spatial, spectral, temporal and radiometric resolutions (FIGURE 2). 

 

Figure 2 – Principles of Remote Sensing. 

 

Source: Author (2018). 

 

Remote sensing is very important and efficient for land cover mapping 

and monitoring purposes because it is generally faster and less costly than the 

information collected at the ground level. It also provides an aerial perspective 
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that allows better understanding of the spatial relationships and invisible data to 

human sense such as spectral information in the infrared region (CONGALTON; 

GREEN, 2009). Thus, remote sensing science has become an universal practice 

in government agencies, environmental organizations, industrial sector, and 

research institutions (KENNEDY; YANG; COHEN, 2010). 

Among the large set of information provided by remote sensing on 

Earth’s surface, the spectral information provides radiation reflectance of target 

in function of electromagnetic wavelengths. The reflectance extracted from 

vegetation dynamics can provide information based on stage of growth, 

vegetation health and moisture content (SCHOWENGERDT, 2007), since this 

information is determined by chemical and morphological characteristics of the 

surface of organs or leaves (PONZONI; SHIMABUKURO; KUPLICH, 2012). 

According to Ponzoni, Shimabukuro and Kuplich (2012), the main 

applications for remote sensing of vegetation are based on the following light 

spectra: (a) the visible region, where the wavelength ranges from 0.4 to 0.72 µm; 

(b) the near infrared region 0.72 – 1,1 µm; and (c) the mid infrared 1,1 – 3,2 µm 

(FIGURE 3). 
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Figure 3 – Typical spectral response characteristics of a green leaf. 

 

Source: Adapted from Ponzoni, Shimabukuro and Kuplich (2012). 

 

In the visible spectra, cell pigments such as chlorophyll, carotene and 

xanthophyll, determine the shape of spectral signature making each curve unique 

by specie. In near infrared, there is a decrease of energy absorption by 

vegetation and an increase the internal scattering of incident radiation. And mid 

infrared contains information about the absorption of radiation by water 

(PONZONI; SHIMABUKURO; KUPLICH, 2012).  According to  Xue and Su 

(2017), the reflectance of the surface of leaves of a green plant without any 

biotic or abiotic stress is generally higher and restricted (0.96 – 0.99 µm) than of 

a dry plant (0.88 to 0.94 µm). 

Another characteristic of remote sensing systems is the repetitive data 

acquisition of a same region on the Earth's surface (SCHOWENGERDT, 2007). 

The multi-temporal information relates the same area to periods of time and their 

changes during the period (LILLESAND; KIEFER; CHIPMAN, 2008). 
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2.3 Monitoring changes in Cerrado 

 

The biome has been subject to the second most rapid land conversion in 

Brazil. Almost 50% were already transformed into others land uses due to 

agriculture expansion, wood predatory extraction, depletion of natural resources, 

and low rate of protected areas (BRASIL, 2011).  

With the monitoring and conservation programs attention upon the 

amazon biome, the human intervention in Cerrado started to be seen by the 

scientific community only at the 90s (TRANCOSO; SANO; MENESES, 2015), 

making the Cerrado one of the least-studied biomes in the world (MENINO et 

al., 2012; RIBEIRO; WALTER, 2008). 

After the opening of the Landsat archive in 2008 by the Landsat Global 

Archive Consolidation (LGAC) initiative, millions of images became available 

enabling time series studies throughout the world (ZHU, 2017). These studies 

have provided for change detection gains in resolution and accuracy, and also 

leveraged the development of programs based on satellite time series, as the 

Brazilian systems: Programa de Monitoramento do Desmatamento da Amazônia 

– PRODES, Detecção do Desmatamento em Tempo Real – DETER, Projeto de 

Monitoramento do Desmatamento dos Biomas Brasileiros por Satélite – 

PMDBBS (DEVRIES et al., 2016). 

Government projects such as Monitoramento do Desmatamento dos 

Biomas Brasileiros por Satélite (PMDBBS) used Landsat TM and CBERS to 

monitoring and mapping deforestation events in the biome. Four deforestation 

reports was generated: until 2002 and from 2002-2008, 2008-2009, 2009-2010 

and 2010-2011 (BRASIL, 2015). 

Scientific studies also evaluated the biome in order to map and monitor. 

Machado et al. (2004) had the initiative of mapping the Cerrado in 2002 using 

MODIS satellite with better precision then global studies, registering an annual 
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loss of 2.2 million hectares in the biome. Sano et al. (2010) also mapped the 

entire biome in 2002 with better spatial resolution, using Landsat ETM+, and 

confirming the intensive land use pressure. In regional scale, Brannstrom et al. 

(2008) evaluated the land conversion in two Cerrado regions between 1986 and 

2002, and founding different spatial patterns of Cerrado fragmentation with  

identical underlying drivers. Using an object based context, Grecchi et al. 

(2013), mapped Cerrado between 1985 and 2005, registering high rates of crop 

expansion in southeastern Mato Grosso State, and Grecchi et al. (2014) for the 

same area and period, linked the land use change with intrinsic environmental 

vulnerability, providing environmental indicators. Beuchle et al. (2015) also 

applied object-based approach to map Cerrado and Caatinga sample units 

between 1990 and 2010, and then estimate the loss in tree coverage and other 

wooded lands. 

 

2.4 Change detection by object based image analysis 

 

Change detection in remote sensing images is applied to two or more 

dates that do not represent the normal variation of a particular area (SHALABY; 

TATEISHI, 2007), and object-based change detection has the goal to identify 

these changes in geographic objects by object-based image analysis (CHEN et 

al., 2012).  

Object based image analysis combines segmentation and remote sensing 

information along with analyst experience with image-objects in order to model 

geographic entities (BLASCHKE, 2010; CHEN et al., 2012).  The segmentation 

is the most common approach for building objects in images (VIEIRA et al., 

2012), which has the objective of creating groups of pixels spectrally similar and 

spatially adjacent from an image with the purpose of minimizing the within-
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object variability compared to the between-object variability (DESCLÉE; 

BOGAERT; DEFOURNY, 2006). 

According to Chen et al. (2012), the advantages of object-based based 

approach on pixel-based change detection methods are: (a) the segmentation 

procedure, which characterizes landscape elements by groups of homogeneous 

pixels, (b) reduction salt and pepper effect attributed by small spurious changes, 

and (c) extraction of sophisticated information of the image objects as geometry 

and texture. 

Among the mainly object-based change detection (OBCD) 

methodologies described in scientific literature, Chen et al. (2012) classify them 

into four groups: (a) image-object change detection: similar to pixel-based, two 

or more image segmented are direct compared by the extraction of spectral 

and/or spatial information; (b) class-object change detection: comparison ―from-

to‖ of image-objects defined by landscape classes  so additional classification 

information is required; (c) multi-temporal object change detection: objects are 

generated by two or more image with temporal information where a set of 

images create one segmentation; (d) hybrid change detection: involve the use of 

both object and pixel methodologies. Table 1 lists some of these OBCD 

methods. 

 

Table 1 – Object-based change detection methods. (Continue) 

Method Authors 

Image-object change detection 

Hall and Hay (2003); Lefebvre, Corpetti and 

Huberty-Moy (2008); Miller, Pikaz and 

Averbuch (2005). 

Class-object change detection 
Desclée, Bogaert and Defourny (2006); 

Gamanya, De Maeyer and De Dapper (2009);  
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Table 1 – Object-based change detection methods. (Conclusion) 

 Xian and Homer (2010). 

Multi-temporal object change 

detection 

Bontemps, Langner and Defourny (2012); 

Chen et al. (2013); Desclée, Bogaert and 

Defourny (2006); Lu et al. (2016). 

Source: Adapted from Couto Júnior (2011). 

 

Despite the of object-based change detections, pixel-by-pixel techniques 

are still widely used in many areas to measure changes using remote sensing 

data (HUSSAIN et al., 2013). 

 

2.5 Data mining in remote sensing 

 

A large amount of remote sensing data may represent a challenge to 

change detection algorithms. Sometimes, the data needs to be discriminated to 

reduce the number of original features that are highly correlated or might be 

redundant in order to improve the detection accuracy and decline the 

computational efforts in the classifier algorithm estimation parameters (PAL; 

FOODY, 2010).  

Given the background, data mining is defined as the process of 

discovering valuable information in a large volume of data (WITTEN et al., 

2016). It encompasses a set of techniques that allow to (a) search through large 

data sets, (b) search for spatio-temporal patterns, (c) extract knowledge and 

relationships, and (d) provide advanced clustering and classification algorithms 

(HUSSAIN et al., 2013). 
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Data mining techniques has been recently applied to remote sensing 

image interpretation using information processing and artificial intelligence to 

get information from a massive volume of satellite images (LARY, 2010). This 

large data set can be related to image time series in studies by Petitjean et al. 

(2010), which mined sequential patterns from pixels in time series, and Boulila 

et al. (2011) that predicted spatiotemporal changes in objects from satellite 

image databases. Silva et al. (2008) explored massive land change patterns in 

order to identify agents of change by a decision tree classifier. 

Regarded to land cover classification, data mining had also been applied 

in decision tree classifiers by setting classification thresholds in pixel (OTUKEI; 

BLASCHKE, 2010) and object-based image classification (VIEIRA et al., 

2012). 

 

2.6 Machine learning algorithms 

 

The science of learning is very involved in the fields of statistics, data 

mining and artificial intelligence, and has proven useful for a large number of 

applications in many fields of science (HASTIE; TIBSHIRANI; FRIEDMAN, 

2009) such as geosciences and remote sensing (LARY, 2010). 

Machine learning is based on experimental supervised methods for 

regression and/or classification of nonlinear systems.  Such systems, as in all 

data mining fields, can be massively multivariate involving thousands of 

variables (LARY et al., 2016). The machine learning algorithms induces to 

information analyze, pattern recognitions, and prediction of accuracies through 

an automated and repeated learning from a set of training data (ROGAN et al., 

2008). 

According to Rogan et al. (2008), the increase of attention upon machine 

learning in remote sensing studies can be attributed by some follow advantages: 



25 

 

 

(a) non-parametric characteristic; (b) reduction of computational effort; (c) 

ability to investigate importance of variables; and (d) flexibility to accommodate 

categorical and continuous variables. Ali et al. (2015) demonstrated a relevant 

activity in the last few years of machine learning methods in biomass and soil 

moisture studies, also listing the most commonly used machine learning 

methods in recent scientific literature (TABLE 2). 

 

Table 2 – Most commonly used machine learning algorithms. 

Algorithms Examples 

Regression Linear, power, logistic regression 

Decision tree Conditional decision trees, C5.0, decision stump 

Bayesian 
Bayesian network, naive, Gaussian naive and 

multinomial naive Bayes 

Artificial neural network 
Perceptron, back-propagation, radial basis function 

network 

Deep learning 
Deep belief networks, convolutional neural 

networks 

Ensemble Random forest, bagging, gradient bagging 

Support vector Support vector machines, support vector regression 

Source: Ali et al. (2015). 

 

A number of machine learning studies have focused on extract and 

analyze vegetation information, such as biomass estimation, land cover 

classification, change detection, and tree species identification 

The aboveground biomass information has been computed in remote 

sensing imagery by machine learning. Algorithms as decision trees and support 

vectors were applied in Landsat images (AVITABILE et al., 2012; POWELL et 
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al., 2010), very high resolution imagery, such as Quickbird (CHEN; HAY; ST-

ONGE, 2012) and WorldView-2 (MUTANGA; ADAM; CHO, 2012), Synthetic 

Aperture Radar data (CARREIRAS; VASCONCELOS; LUCAS, 2012; 

KARJALAINEN et al., 2012) and multi sources (GUO et al., 2012). Estimation 

of forest measures volume/ha, basal area/ha and stems/ha using field inventory 

and Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) data was demonstrated by Shataee et al. (2012) using three different 

types of machine learning algorithms. 

Land cover classification carried out by remote sensing and machine 

learning was established by Pelletier et al. (2016) assessing the Random Forest 

to map land cover in large areas, Lardeux et al. (2009) classifying tropical 

vegetation by support vector machine using SAR data, and Juel et al. (2015) 

using object based analysis of aerial orthophoto and DEM data to classify 

coastal vegetation. In savanna regions, Mishra and Crews (2014) examined the 

contributions made by spectral and topographic variables calculated from 

objects in order to map the land cover. 

The detection of changes were supervised detected by Rogan et al. 

(2008) comparing multiple machine learning algorithms in order to map land 

cover modifications, and Makkeasorn, Chang and Li (2009) detecting seasonal 

changes of riparian zones based on genetic programming. Bovolo, Bruzzone and 

Marconcini (2008) used unsupervised change detection in multispectral remote-

sensing images using a selective Bayesian threshold. 

In savanna regions, machine learning has been applied in tree species 

classification (ADELABU et al., 2013; COLGAN et al., 2012). Almeida et al. 

(2014) also applied using multiscale classifier to detect phenology patterns in 

Cerrado trees. 
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CHAPTER 1 EXPLORATORY ANALYSIS OF LAND COVER 

CHANGES USING THE SPECTRO-TEMPORAL CONTEXT 

 

ABSTRACT 

 

Human-induced land cover changes are commonly found in Cerrado formations, 

and its vegetation complexity has been proved to be a challenge regarding 

change detection techniques. The aim of this study was to carry out an 

exploratory analysis of Landsat OLI images based on data mining techniques 

and object-based image analysis. We used cloud cover and cloud mask to 

indicate image availability in the study area. In addition, OLI spectral channels 

were evaluated in order to discriminate human induced from natural changes. In 

the temporal context, image acquisition was linked to cloud possible noise and 

cloud mask edition, which can take expensive work and accuracy dependency 

into account based on cloud mask uncertainties. On the other hand, free cloud 

image compositions presented good change detection accuracies even for 

distinct image frequencies. In spectral background, four filter-based methods (a) 

correlation-based; (b) consistency-based; (c) gain ratio; and (d) Relief-F selected 

the Short-wave Infrared spectral channel of OLI sensor as the best band to detect 

deforestations in this vegetation type, followed by Red channel. Thus, this study 

emerged new options to savanna change detection through an exploratory 

analysis in change areas. 

 

Keywords: Land cover changes. Cerrado. Exploratory analysis. Data mining.
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RESUMO 

 

Mudanças antrópicas são frequentemente descritas na paisagem do Cerrado, e a 

complexidade destas formações tem mostrado ser um desafio na detecção 

automática de mudanças. Neste estudo foi realizada uma análise exploratória 

através de técnicas de mineração de dados e análise orientada ao objeto em 

imagens Landsat OLI. A disponibilidade de imagens e cobertura de nuvem foi 

avaliada, e também os canais espectrais em relação à discriminação de mudanças 

antrópicas de mudanças naturais da paisagem. No contexto temporal, a seleção 

das imagens mostrou estar diretamente relacionado a cobertura de nuvem e a 

performance de uma máscara de nuvem, o que pode gerar um processamento 

oneroso além da dependência da acuracidade dos dados, porem, séries temporais 

compostas por imagens com total ausência de nuvens mostraram resultados 

satisfatórios mesmo com distinção no numero de imagens por área. Já no 

contexto espectral, quatro métodos de seleção baseados em filtro: (a) método de 

correlação; (b) método de consistência; (c) ganho de informação; e (d) algoritmo 

Relief-F, selecionaram a banda espectral do Infravermelho Médio do sensor OLI 

como a melhor na distinção de desmatamentos na vegetação do Cerrado, seguida 

da banda do Vermelho. Assim, este estudo pode gerar novas opções na detecção 

de mudanças da cobertura do solo neste tipo de vegetação através uma análise 

exploratória das áreas de mudança. 

 

Palavras-chave: Mudanças na cobertura do solo. Cerrado. Análise Exploratória. 

Mineração de Dados. 
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1 INTRODUCTION 

 

There are a myriad of techniques and algorithms in the scientific 

literature for monitoring, analyzing and detecting changes in native vegetation 

(HUSSAIN et al., 2013), but the current research is not enough to identify 

optimum approaches and to tackle persistent problems for change detection 

(TEWKESBURY et al., 2015). The complexity of Brazilian savanna biome 

generates a challenge for change detection studies (HILL et al., 2017) and a lack 

of information, which makes the Cerrado one of the least-studied biomes in the 

world (MENINO et al., 2012; RIBEIRO; WALTER, 2008). 

The analysis and quantification of human induced deforestation in 

Cerrado areas have been proved to be a challenge regarding spectral information 

(TRANCOSO; SANO; MENESES, 2015). Although NDVI became the most 

frequently used vegetation index in the world, the exploration of new spectral 

metrics had been suggested in the biome (PEREIRA et al., 2016; TRANCOSO; 

SANO; MENESES, 2015). Recently, studies proposed post classification 

comparison in Cerrado change detection and monitoring (BEUCHLE et al., 

2015; BRANNSTROM et al., 2008; GRECCHI et al., 2013, 2014) while in 

burned areas, spectral channels based on near infrared (DACAMARA et al., 

2016; LIBONATI et al., 2011; PEREIRA et al., 2017) and middle infrared 

(DACAMARA et al., 2016; LIBONATI et al., 2011, 2012) have been used. 

Additionally, large image archives does not avoid the difficulty to obtain 

dense time series due to cloud cover or revisiting cycle limitation (BONTEMPS 

et al., 2008; LU et al., 2016). For example, Kovalskyy and Roy (2013) estimated 

the probability, at global scale, of obtaining at least one free cloud image for the 

years 2000 and 2010 was 0.194 and 0.332 respectively. Also land cover 

monitoring methods for temperate forests generally are characterized by a higher 
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frequency of cloud-free observations than in tropical forests (SCHULTZ et al., 

2016). 

Chapter I makes a spectral analysis of the Operational Land Imager 

(OLI) sensor in Cerrado changed areas and its relation to cloud free image 

availability. This study was intended to answer two main questions: (a) which 

spectral band can better discriminate changed areas from seasonal areas (no 

change) in order to improve change detection approaches in zones with high 

phenological seasonal noise? (b) how cloud-free imagery affects the change 

detection on those seasonal areas? 
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2 OBJECTIVES 

 

The main objectives of the chapter were: (a) to evaluate image data 

availability in change detection; and (b) to evaluate the best spectral bands to 

discriminate human-induced changes from seasonal changes in native 

vegetation.
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3 METHODOLOGY 

 

3.1 Study area 

 

The study area is located in the Bacia Hidrográfica dos Afluentes 

Mineiros do Médio São Francisco (SF9), a basin in the northern State of Minas 

Gerais, Brazil. Placed between 43º00’ to 46º00’ West and 14º00’ to 16º00’ 

South, the study area occupies more than thirty one thousand square kilometers 

in 24 counties with total population of 284,475 people (IBGE, 2010).  

According to Carvalho and Scolforo (2008), about 59% of the area is 

represented by native vegetation with a wide range of types or physiognomies, 

where Cerrado is absolute in the area (about 37%) ranging from grasslands to 

heavily wooded areas and gallery forests.  

Peel et al. (2007) described the climate as Tropical savanna (Aw) with 

distinct dry winter and wet summer, which influence the vegetation’s spatial and 

spectral dynamics. 

The deforestation rates are still high in the study area. According to the 

“Monitoramento do Desmatamento dos Biomas Brasileiros por Satélite” 

project, about 6,631 km² of Cerrado was deforested until 2002 and 1,244 km² 

between 2002 and 2008 (BRASIL, 2009), also 584 km² between 2008 and 2009 

(BRASIL, 2011), 175 km² between 2009 and 2010 (BRASIL, 2011), and 118 

km² between 2010 and 2011 (BRASIL, 2015).  

Eight sampling areas of 100 km² mostly covered by native vegetation 

with change events were particular selected at the study site, being four samples 

to use in this chapter and the others four in the next one (FIGURE 4). 
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Figure 4 – Study area. 

 

Legend: Landsat OLI image false color composition R = NIR, G = SWIR, B = Red. 

Source: Author (2018). 
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3.2 Data 

 

All available Landsat Operational Land Imager (OLI) imagery acquired 

from 2013 to 2014 with no cloud cover restriction per scene and processing level 

L1C Higher Level from United States Geological Survey for Earth Observation 

and Science (USGS/EROS) were downloaded. The data quality of L1C Higher 

Level product supports time series analyses and data stacking with high 

precision (RMSE < 12m) (ZHU, 2017) and bottom of atmosphere reflectance 

calculated by Vermote et al. (2016). 

All OLI bands with 30 meters of resolution were used (TABLE 3) 

except Band 1 (Ultra Blue) and Band 9 (Cirrus) which are useful for aerosol 

studies and cirrus cloud detection. 

 
Table 3 – Landsat OLI bands used in the study. 

Bands Abbreviation Wavelength (µm) 

Band 2 – Blue B 0.452 – 0.512 

Band 3 – Green G 0.533 – 0.590 

Band 4 – Red R 0.636 – 0.673 

Band 5 – Near Infrared NIR 0.851 – 0.879 

Band 6 – Shortwave Infrared SWIR 1 1.566 – 1.651 

Band 7 – Shortwave Infrared SWIR 2 2.107 – 2.294 

Source: Adapted from Roy et al. (2014). 

 

3.3 Cloud cover 

 

The presence of clouds and shadows in remote sensing imagery is 

considered noise by change detection approaches. The high brightness values of 
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clouds and the darkening effect of cloud shadows can be confused with land 

cover change if they are not evaluated (ZHU; WOODCOCK, 2012). 

The cloud detection algorithm Fmask, developed by Zhu and Woodcock 

(2012) and available at Landsat L1C product from USGS/EROS, was applied to 

analyze the cloud scene frequency in each sampling area. Parallel to frequency 

analysis, cloud and shadow free images per sample were selected to the next 

steps. 

 

3.4 Ancillary data 

 

A land cover classification was produced in the first image, year 2013. 

The classification method adopted was the object-based image classification 

performed in eCognition Developer 8.0 (DEFINIENS, 2009). The multi-

resolution segmentation algorithm described by Baatz and Schäpe (2000) was 

applied and its criteria adjusted to a scale parameter (hsc) equal to 50 and the 

compactness (wcp) and shape (wsp) equal to 0.3 for both parameters (a clearly 

description about segmentation is given in section 3.5). The fuzzy logic 

classified Cerrado objects based on spectral parameters selection. Classification 

post processing, such as manual edition, corrected class errors improving the 

final map accuracy.  

High resolution imagery provided by GeoEye and Rapideye satellites 

supported an accuracy analysis based on a confusion matrix and validation 

Cerrado samples. 

The classification map created a Cerrado mask in order to support the 

study where change areas only limited to this vegetation type were taken into 

analysis.  
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3.5 Multidate segmentation 

 

Image segmentation has the objective of creating groups of pixels 

spectrally similar and spatially adjacent from an image with the purpose of 

minimizing the within-object variability compared to the between-object 

variability (DESCLÉE; BOGAERT; DEFOURNY, 2006).  

According to Tewkesbury et al. (2015), the definition of the unit of 

analysis in object-based change detection can be classified in (a) image-object 

change overlay, where the segmentation is applied in one of the images and a 

comparison against other images is then made by simple overlay; (b) image-

object comparison, where objects are created in each image in the time series 

individually; and (c) multi-temporal image-object, the segmentation is applied in 

the entire times series together. 

In this study, multi-temporal image-objects were created by segmenting 

difference images of sequential periods, and defined in a single operation from 

the whole set of spectral bands using all sequential difference images together. 

Adapted from Desclée, Bogaert and Defourny (2006), this method assumes 

spectral, spatial and temporal information of difference images which creates 

objects based on the feature dynamics in time, as example, change events in a 

vegetation background.  

The algorithm is the multi-resolution segmentation as performed in the 

land cover classification (EQUATION 1). 

 

   ∑     (     )    

 

√  
  

        
 

  
                                        

 

Where there are parameters set by user’s visual analysis as wsp is the 

spectral parameter ranging from 0 to 1 (zero is the maximum weight to spectral 
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homogeneity and 1 is the opposite for object shape); wcp is the same meaning of 

wsp but to compactness and smoothness parameters, adjusting the object shape 

between compact objects and smooth boundaries; and the scale parameter hsc 

sets the object size. The others parameters are number of spectral bands nb; 

within-object variance for a spectral band σb; object border length l; number of 

pixels np; and the shortest possible length lr given the rectangle bounding the 

pixels.  

The methodology for the multidate segmentation and the next three 

steps in sections 3.6 to 3.8 are illustrated by a framework in Figure 5. 
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Figure 5 – Framework of the OLI band analysis for land cover change. 

 

Legend: i is an object created by segmentation, t is an image, tk is the last image of 

a sampling area, k is the dimension of an image difference composite, g is the 

maximum spectral difference gradient; and p is the last observation in feature 

selection. 

Source: Author (2018). 
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3.6 Extract temporal statistics 

 

In order to extract information from the objects, the mean pixel value 

inside an object was calculated for all OLI spectral bands. 

The maximum spectral gradient difference (SGD), adapted from Chen et 

al. (2013) and Lu et al. (2016), was calculated based on the objects means i, 

where a greater positive absolute value of g(i, t, t -1) in a band b indicates a 

larger change from time index t-1 to t (EQUATION 2). 

 

          [                   ]   
                                                                          

 

3.7 Change objects validation 

 

The validation of change objects, basically deforested areas in Cerrado, 

was manually performed by visual image interpretation in the whole data set 

(FIGURE 6). High resolution imagery as provided by Google Earth or Bing 

platforms is not always available for validation in a given period, so the changed 

objects were confirmed by analyst experience. Burn events were not 

representative in the sampling areas, so not considered. 
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Figure 6 – Validation of change and no change objects. 

 

Legend: Landsat OLI image false color composition R = NIR, G = SWIR, B = Red.  

Source: Author (2018). 
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3.8 Feature selection 

 

Feature selection methodologies were basically divided in three 

categories: Filter, Wrapper and Embedded. The first division was executed in 

this study due to some advantages as: (a) independent assessment based on 

general characteristics of the data; (b) not dependent on classifiers; (c) usually 

faster than wrapper based methods; and (d) low computational complexity.  

The goal of this analysis was to make feature selection as exploratory 

analysis with the purpose of not taking into account data reduction for future 

procedures, so filter-based facilities support the chapter aim. However, wrapper 

and embedded methods are also appropriate. 

Beside the large amount of feature selection methods in scientific 

literature, four of them were applied in the database, two multivariate: 

Correlation-based and Consistency-based feature selection, and two univariate: 

Gain ratio and Relief-F. The feature selection input is represented by the 

instances (objects) and attributes (bands SGDmax values). 

In the multivariate methods, the Best First Search heuristic was applied 

in order to identify a good subset by evaluating the five last subsamples that not 

increased the maximum Merit, and then set the subsample as stop criteria. A 10-

fold cross validation was fitted in the selection methods and the number of folds 

containing a particular attribute ranked the band performance. In order to group 

the results, a nominal arrangement was created based on the number of folds in 

cross validation that selected a particular band. Thus, a band selected in nine or 

ten folds was registered with high significance; selection in seven or eight folds 

has medium significance; five or six low significance; and less than five was not 

relevant.  
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For univariate, a Ranker procedure sorted attributes by their individual 

evaluations. Ranking methods were used due their simplicity and good results 

for practical applications (CHANDRASHEKAR; SAHIN, 2014). 

The four selection methods results were combined and re-established in 

an ordinal ranking in order to analyze the result by an intuitive view. 

The fitted models, search methods and cross validation were performed 

at Weka 3.8 software (FRANK et al., 2016). 

 

3.8.1 Correlation-based 

 

The correlation-based feature selection (CFS) selects a subset of 

attributes based on a subsample heuristic evaluation considering the attribute-

attribute and attribute-class correlation (HALL, 1999). The CFS heuristic 

evaluates the worth or merit s of a subset of features (EQUATION 3) 

 

          
     

√             

                                                                           

 

Where f is the number of attributes; Cci is the attribute-class correlation; 

and Cii is the attribute-attribute correlation. 

 

3.8.2 Consistency measure 

 

Developed by Liu and Setiono (1996), consistency feature selection 

(CSY) evaluates a subset of attributes by the degree of consistency in class 

values when the training instances are projected onto the set (WITTEN et al., 

2016). The degree of consistency is defined by an inconsistency rate where two 

instances are considered inconsistent if they have the same feature values but 
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different attributes. So, the goal is to select attributes that better allow to define 

consistent logical hypothesis about the training data set (ARAUZO-AZOFRA; 

BENITEZ; CASTRO, 2008). 

 
3.8.3 Information Gain Ratio 

 

Information Gain Ratio (IGR) elects attributes by ranking the entropy 

reduction. The information gain or entropy reduction is defined as the difference 

between the prior uncertainty and expected posterior uncertainty, defined in this 

study by the Shannon entropy. The ratio purpose solves the bias of huge 

databases increasing sensitivity to the analysis by an amount of split information 

(EQUATION 4). 
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Where d is the number of dimensions of the variable; PD(Ci) is the 

probability of the variable value = Ci; p is the number of dimensions of attribute 

A; Dj is the number of cases for A's each dimension j, and D is the total number 

of cases for A. 

 
3.8.4 Relief-F 

 

The Relief-F algorithm (RLF), developed by Kononenko (1994) is an 

instance based that selects instances randomly and compute a weight values 

based on nearest neighbors of the same and different classes.  Near instances 

with different values for an attribute makes it irrelevant and computes a decrease 

of weight for the specific attributes, and vice-versa (JIA et al., 2013) 

(EQUATION 5). 
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Where f is the feature; i is the randomly selected instance; m is the 

sample size; diff() is the distance between samples; p() is the probability; k is an 

instance selected in every class; c is a class different from class(); M(x) is 

nearest-neighbor sample with the same class; and H(x) is nearest-neighbor 

sample with different class. 
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4 RESULTS AND DISCUSSION 

 

4.1 Cloud free data 

 

The cloud free image analysis returns scene availability from 24 to 46% 

per sampling area by a total of 37 acquisitions in 2013-2014 period. However, 

an increase of 19 to 38% in scene availability is registered when cloud cover was 

allowed until 5% (TABLE 4). 

 

Table 4 – Percentage of Landsat 8 OLI images free of clouds. 

S.A. 
Free cloud cover scene 

availability 

5% cloud cover scene 

availability 

1   9 – (24%) 23 – (62%) 

2 13 – (35%) 18 – (49%) 

3 17 – (46%) 24 – (65%)  

4 16 – (43%) 24 – (65%) 

Source: Author (2018). 
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Figure 7 – Data availability based on cloud cover. 

 

Source: Author (2018). 

 

Figure 7 registered an abrupt increase of scene availability between 0 

and 5% cloud cover, a smoothed increase until 95% of cloud cover, and again an 

abrupt to 100%. The first gain, which has the biggest attention to change 

detection image selection, might be justified by two situations: a) a true low 

cloud cover (FIGURE 8a); and b) mask errors that overestimates the cloud cover 

(FIGURE 8b). 
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Figure 8 – Low cloud cover situation and mask errors. 

 

Legend: Landsat OLI image false color composition R = NIR, G = SWIR, B = Red. 

Source: Author (2018). 

 

Mask errors can be represented by the confusion between clouds and 

land cover with high brightness as bare soils (FIGURE 8b) or also cloud 

shadows with low brightness pixels as deep water bodies. 

When a maximum cloud cover is allowed, underestimated errors can 

also be detected (FIGURE 8c and 8d). This sort of error needs to be checked and 

edited in the cloud mask because it may exceed the maximum cloud cover at the 

area, making the study unfeasible. 

Optimal image selection is difficult to access as requirements area are 

often application specific (BANSKOTA et al., 2014). The database creation is 

also linked to cloud possible noise and cloud mask edition, which takes 



50 

 

expensive work and accuracy dependency into account. However, the cloud 

mask algorithms are necessary in the database creation, once the imagery 

amount needs to be controlled based on the maximum cloud cover allowance. 

 

4.2 LULC classification 

 

The classification map presented accuracies higher than 90%. These 

high accuracies are required in this mask process because it indicates an accurate 

data input for change detection and a low error rate for the next procedures. 

Cerrado physiognomies were not distinguished since these vegetation 

gradients have high structural and spectral similarity (SCHWIEDER et al., 

2016), where this classification can reduce land cover mapping accuracy and has 

no meaningful impact on change analysis. 

 

4.3 Feature selection 

 

The correlation method (FIGURE 9) checked Blue, Red and SWIR2 

bands with high significance, where SWIR2 was selected in all folds and all 

sampling areas, resulting in a perfect performance for this method. Red, NIR and 

SWIR1 were also checked with medium significance for change detection in 

some SA. Green band and other SA were weak or irrelevant in the analysis. 

Figure 9 drafts Red and SWIR2 as the most significance bands in the 

subsets created by correlation based selection. 
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Figure 9 – Band subset selection by correlation based method. 

 

Source: Author (2018). 

 

Figure 10 – Band subset selection by consistency based method. 

 

Source: Author (2018). 

 

Figure 10 presents de band selection computed by the consistency 

method. As the CFS, Red and SWIR2 presented higher significance results in 

this selection, red band reach better results in the sampling areas one, three and 

four, and a better general classification. Blue and SWIR1 presented high and 

medium significance for particulars SA as well. 
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The NIR band was not significant in the multivariate procedures as a 

similar result founded by Trancoso, Sano and Meneses (2015). For univariate 

procedures, bands were ranked and Figures 11 and 12 registered the first three 

best bands selected for each sampling area. 

 

Figure 11 – Band selection by information gain ratio method. 

 

Source: Author (2018). 

 

Figure 12 – Band selection by relief-F method. 

 

Source: Author (2018). 
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The second shortwave infrared was the most significant band for almost 

all sampling areas. It reached the best results in IGR method except for SA 

number three and for RLF method except for SA number four. SWIR1 presented 

the best discrimination for SA3 in IGR, and the blue band for SA4 in RLF. 

Univariate results were not so far different from multivariate since the 

red band scoring the second best discrimination for the areas two and four, and 

the third position for area three. Near infrared was not present in the first three 

positions for any univariate method. 

The four selection methods ranked are seen in Figure 13. 

 

Figure 13 – General selection ranking by each sampling area. 

 

Source: Author (2018). 

 

Based on the selection methods used in this study, SWIR2 was the best 

band to detect human-induced changes for two sampling areas with high 

seasonality. Red and SWIR1 achieved the first position for the others SA. Blue, 

green and NIR bands complete the order of significance. 

The results presented a scene dependency that can be justified by aerosol 

effects or different seasonal influence since the large size of the study area 

where the sampling areas may reach 120 km from each other. 
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4.4 Emerging options for Cerrado change detection 

 

In remote sensing science, the NDVI is the most frequently used index. 

Based on the spectral signature of vegetation and soil (FIGURE 14), reflectance 

values in the SWIR region are divergent where soil reflectance is greater than 

vegetation reflectance. However to red and NIR bands (NDVI composition), the 

reflectance values between soil and vegetation are less divergent. NDVI may be 

much applied on vegetation studies but not quite relevant on soil applications 

compared to SWIR bands. 

 

Figure 14 – The spectral signatures of soil and vegetation, and spectral bands of 

Landsat OLI. 

 

Source: Jensen (2009). 

 

Some authors have indicated the use of new metrics in order to describe 

and detect changes in the Cerrado biome. A spectral context based on SWIR 

channel is reported by Guerschman et al. (2009) and Hill et al. (2017) to 
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characterize Cerrado vegetation, and suggested by Trancoso, Sano and Meneses 

(2015) to detect deforestations in those areas. Acerbi Júnior et al. (2015) and 

Silveira et al. (2017) used spatial context in order to detect deforestation in 

Cerrado areas with seasonal noise. 

A new option to detect Cerrado changes is to look forward the change 

event. Land cover class post change (bare soil, initial forest regeneration, initial 

crops fiends, etc.) must be comprehended as the pre change (native vegetation) 

and it needs to be part of the change analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 

 

 

5 CONCLUSION 

 

Clouds and cloud shadows will always be a noise for most change 

detection studies over the world and the use of cloud mask algorithms for large 

areas and monitoring programs is very important in order to mitigate change 

detection errors. However, cloud mask algorithms present miscalculations and a 

thorough cloud and mask analysis can support study planning and decision 

making. The free cloud cover method applied in the study presented good 

change detection accuracies even for distinct image frequencies. 

Landsat OLI spectral channels based on shortwave medium infrared 

(2.107 – 2.294 µm) and red (0.636 – 0.673 µm) presented the best results that 

discriminated Cerrado changes for a group of feature selection algorithms. These 

results may emerge more opportunities to detect changes in vegetation areas 

affected by seasonal noise. Spectral indices based on SWIR and Red 

wavelengths must be evaluated in order to improve deforestation detection in the 

Cerrado.
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CHAPTER 2 EVALUATING MACHINE LEARNING ALGORITHMS IN 

CERRADO CHANGE DETECTION 

 

ABSTRACT 

 

There is no optimal method without limitation that can be applied in Cerrado 

formations, so that a wide range of change detection methods are still being 

proposed and assessed. This study used the promisor bands previously evaluated 

in chapter one to calculate spectral indices, in order to create an input dataset for 

three machine learning algorithms, Artificial Neural Network (ANN), Random 

Forest (RF) and Support Vector Machine (SVM). A parameter simulation was 

carried out for each algorithm and the best architecture was selected to generate 

change maps and an attribute importance analysis. The three algorithms 

presented satisfactory performances, but Random Forest demonstrated the best 

results in test phase with overall accuracy of 92% and low error variation in the 

parameter simulation phase. Spectral channels as short wave infrared, tasseled 

cap brightness and greenness transformations had positive influence in the three 

algorithms while NDVI showed poor influence in neural network and Random 

Forest algorithms.  

 

Keywords: Land cover changes. Cerrado. Object-based image analysis. 

Machine learning. 
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RESUMO 

 

A presença de um método de detecção de mudanças que se aplique no Cerrado 

sem limitações é algo ilusório na ciência atual. Várias metodologias de detecção 

de mudanças nessas formações vêm sendo desenvolvidas e avaliadas na tentativa 

de mitigar erros de detecção. Este estudo utilizou bandas promissoras do 

capítulo 1 para o cálculo de índices espectrais, onde estes serviram como base de 

entrada para três algoritmos de aprendizado de máquina, Redes Neurais 

Artificias (RNA), Random Forest (RF) e Support Vector Machine (SVM). Uma 

simulação de parâmetros dos três algoritmos foi realizada onde a melhor 

configuração produziu mapas de mudança das áreas e uma análise da 

importância de cada atributo espectral. Os três algoritmos apresentaram 

resultados satisfatórios, porem o algoritmo baseado em árvores de decisão 

Random Forest, gerou os melhores resultados na fase de teste, com acurácia 

global de 92%, além de baixa variação do erro de predição na fase de simulação. 

Canais espectrais como o infravermelho de ondas curtas, transformação tasseled 

cap brightness e greenness se mostraram importantes no desempenho dos três 

algoritmos enquanto o índice NDVI se mostrou inviável para os algoritmos de 

redes neurais e o Random Forest.  

 

Palavras-chave: Mudanças na cobertura do solo. Cerrado. Análise orientada ao 

objeto. Aprendizado de máquina. 
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1 INTRODUCTION 

 

Change detection in forest environments is not a trivial task. There is no 

optimal method without limitations that can be applied in all landscapes 

(HUSSAIN et al., 2013). The Brazilian savannas, known as Cerrado, is one of 

the most complex global environments (HILL et al., 2017), its high seasonal 

noise, vegetation heterogeneity, and high anthropic pressure on the biome make 

good change detections accuracies a challenge (TRANCOSO; SANO; 

MENESES, 2015).  

Remote sensing studies have recently focused on assessing land cover 

changes in Cerrado (BEUCHLE et al., 2015; BRANNSTROM et al., 2008; 

COELHO et al., 2014; GRECCHI et al., 2013, 2014) and searching for options 

in order to mitigate change detection misclassifications on deforestation 

(ACERBI JÚNIOR et al., 2015; TRANCOSO; SANO; MENESES, 2015; 

SILVEIRA et al., 2017), and burn events (DACAMARA et al., 2016; 

LIBONATI et al., 2011, 2012; PEREIRA et al., 2017). 

In addition, a wide range of change detection methods in these particular 

landscapes continues to be proposed and assessed, once simple classifiers may 

reach their limits in some applications (BELGIU; DRĂGUŢ, 2016). Machine 

learning algorithms have proven to be useful tools for a large number of 

applications, including remote sensing and geosciences (LARY et al., 2016). 

Specifically on vegetation change detection they have been recently applied to 

regional (BRANDT et al., 2012; DEVANEY et al., 2015; DEVRIES et al., 

2016; PEREIRA et al., 2017), national (GUINDON et al., 2014; HEALEY et al., 

2018), and global (HUANG et al., 2008) scales. 

Therefore, Chapter II proposed to evaluate the issue of detecting 

deforestation in seasonal areas using spectral information based on the results of 

Chapter I through machine learning algorithms. The study was motivated by the 
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following research question: Is it possible to detect human-induces land cover 

changes in areas affected by seasonality with high accuracies? 
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2 OBJECTIVES 

 

The main objective of this chapter was to evaluate the use of machine 

learning algorithms for Cerrado change detection based on the spectral indices 

selected in Chapter One. The analysis was divided into: (a) evaluation of 

different algorithms for Cerrado change detection, and (b) assessment of 

individual spectral channels and indices in all algorithms. 
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3 METHODOLOGY 

 

In this chapter, some initial methodologies sections are in common with 

Chapter 1. Except for the study area section with difference in the location of the 

sampling areas (FIGURE 15), data preparation and segmentation procedures are 

equal and no longer described in this chapter but shown in Figure 16.  

 
Figure 15 – Study area. 

 

Legend: Landsat OLI image false color composition R = NIR, G = SWIR, B = Red. 

Source: Author (2018). 
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Figure 16 – Framework of land cover change methodology. 

 

Legend: i is an object created by segmentation, t is an image, tk is the last image of 

a sampling area, k is the dimension of an image difference composite, g is the 

maximum spectral difference gradient; and p is the last observation in change 

detection. 

Source: Author (2018). 
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3.1 Spectral indices 

 

A set of eight spectral indices, including the Normalized Difference 

Vegetation Index (NDVI), were selected (TABLE 5). The NDVI was chosen 

because it is the most frequently used spectral index in remote sensing science 

(SCHULTZ et al., 2016). In addition, Red and Shortwave Infrared channels of 

OLI sensor, which were best ranked in chapter one, completed the input dataset 

(TABLE 6). 

Despite a large list of indices that handles shortwave channels can be 

found in scientific literature, the selection took into account band computations 

that are sensitive to vegetation characteristics, states or changes (DEVRIES et 

al., 2016; SCHULTZ et al., 2016).  

 

Table 5 – Spectral indices used in this study. (Continue) 

Name Abv. Equation Reference 

Mid Infrared 

Burned Index 
MIRBI 

10 * SWIR2 + 9.8 * 

SWIR1 + 2 

(TRIGG; 

FLASSE, 2001) 

Normalized Burn 

Ratio 
NBR 

 IR -  WIR2

 IR +  WIR2
 

(KEY; 

BENSON, 

2006) 

Normalized Burn 

Ratio 2 
NBR2 

 WIR1 -  WIR2

 WIR  +  WIR2
 

(DEVRIES et 

al., 2016) 

Normalized 

Difference 

Moisture Index 

NDMI 
 IR -  WIR1

 IR +  WIR1
 

(JIN; SADER, 

2005) 

Normalized 

Difference 
NDVI 

 IR - R

 IR + R
 

(ROUSE et al., 

1973) 
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Table 5 – Spectral indices used in this study. (Conclusion) 

Vegetation Index    

Tasseled Cap 

Brightness 
TCB 

b1 * B + b2 * G + b3 * R 

+ b4 * NIR + b5 * SWIR1 

+ b6 * SWIR2 

(BAIG et al., 

2014) 

Tasseled Cap 

Greenness 
TCG 

g1 * B + g2 * G + g3 * R 

+ g4 * NIR + g5 * SWIR1 

+ g6 * SWIR2 

Tasseled Cap 

Wetness 
TCW 

w1 * B + w2 * G + w3 * R 

+ w4 * NIR + w5 * 

SWIR1 + w6 * SWIR2 

Source: Adapted from DeVries et al. (2016). 

 

Table 6 – Landsat OLI bands used in the study. 

Bands Abbreviation 
Wavelength 

(µm) 

Band 4 – Red R 0.636 – 0.673 

Band 7 – Shortwave Infrared SWIR 2 2.107 – 2.294 

Source: Adapted from Roy et al. (2014). 

 

 

3.2 Data input 

 

Objects of the four sampling areas were combined and a sample of 100 

objects per class (change or no change) was set. The sample was set according to 

Belgiu and Dragut (2016) requirements: (a) the databases must be statistically 

independent; (b) training samples must contain almost the same number of 
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observations per class, and be representative in the target class; (c) training 

sampling must be large enough to avoid Hughes phenomenon. The sampled data 

were divided into three parts, which is suggested by Hastie et al. (2009) when 

the study area is encompassed by a ―data-rich situation‖, as described below. 

1. Training set (50% of the data): used to fit the models.  

2. Validation set (25% of the data): used to compare the performances of 

the prediction algorithms that were created based on the training set. The 

performances were evaluated by the prediction error for the models with 

data outside the training set.  

This data set contains the pre-classified results but they were not used 

for fitting the model.  

3. Test set (25% of the data): used to assess the generalization error of the 

final chosen model by each algorithm. The test data set ran against the 

fitted model and the results compared to the unused pre-classified data 

and evaluated by a confusion matrix.  

 

3.3 Change detection 

 

Three machine learning algorithms, Artificial Neural Network, Random 

Forest, and Support Vector Machine, were chosen to detect the vegetation 

changes (BELGIU; DRĂGUŢ, 2016; MAS; FLORES, 2008; MOUNTRAKIS; 

IM; OGOLE, 2011). These non-parametric supervised classifiers did not make 

assumptions regarding frequency distribution, a good characteristic to represent 

remotely sensed data (LARY, 2010). 

 

 

 

 



70 

 

3.3.1 Artificial Neural Network 

 

The first machine learning method evaluated was the artificial neural 

network (ANN) which have become a usual technique in the analysis of 

remotely sensed data since the evolution of artificial intelligence and the 

computational effort (MAS; FLORES, 2008). 

In this study, the multilayer perceptron architecture was chosen because 

it is the most used class of ANN in applied fields. It is divided in a set of inputs, 

which were the spectral attributes of each object observed, a set of computation 

nodes or hidden layers, and two sets of output nodes that were change or no 

change object situation. 

Backpropagation algorithm was applied together with the multilayer 

perceptron architecture. It is divided in a initialization phase assigning random 

numbers to the synaptic weights; forward computation that propagate the node 

values in the hidden layers (EQUATION 6); and back propagation computes the 

error signals corresponding to each neuron (EQUATION 7) (MAS; FLORES, 

2008). 

 

vk   ∑wkj * xj

m

j 0

                                                                                                 (6) 

ek   dk -  k
 vk                                                                                                     (7) 

Where a neuron vk is the defined by a synaptic weight wkj and a signal xj 

or a connection j. The error computed by the desired output of the neuron dk and 

the activation function φk, which is defined in this study by the logistic 

activation function (EQUATION 8) 

 

 
k
   

1

1+ e-a*v
                                                                                                       ( ) 
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In this study, the optimization of ANN includes the choice of hidden 

layers, learning rate and momentum for dataset validation. A set of 

configurations were tested in order to find the most successful and robust 

architecture. The parameters learning rate (LR) and momentum (Mom) were set 

in 0.1, 0.5 and 0.9 for five, ten and fifteen hidden layers (HL) (TABLE 7). 

 

Table 7 – Parameter simulation in the multilayer perceptron architecture. 

Parameter Simulations 

LR 

Mom. 

HL 

0.1 

0.7 

5 

0.1 

0.9 

5 

0.3 

0.7 

5 

0.3 

0.9 

5 

0.5 

0.5 

5 

0.7 

0.1 

5 

0.7 

0.3 

5 

0.9 

0.1 

5 

0.9 

0.3 

5 

LR 

Mom. 

HL 

0.1 

0.7 

10 

0.1 

0.9 

10 

0.3 

0.7 

10 

0.3 

0.9 

10 

0.5 

0.5 

10 

0.7 

0.1 

10 

0.7 

0.3 

10 

0.9 

0.1 

10 

0.9 

0.3 

10 

LR 

Mom. 

HL 

0.1 

0.7 

15 

0.1 

0.9 

15 

0.3 

0.7 

15 

0.3 

0.9 

15 

0.5 

0.5 

15 

0.7 

0.1 

15 

0.7 

0.3 

15 

0.9 

0.1 

15 

0.9 

0.3 

15 

Legend: LR = Learning Rate; Mom. = Momentum; and HL = Hidden Layers.  

Source: Author (2018). 

 

3.3.2 Random Forest 

 

Random Forest (RF) is a well-known ensemble learning method that 

combines classification or regression decision trees (BREIMAN, 2001). These 

decision trees are built by performing an individual learning algorithm that 

randomly splits the input dataset at each node into subsets based on an attribute 
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value test. In the output, all value tests at each tree are assessed and the data is 

classified by a majority of votes (PELLETIER et al., 2016) 

Two parameters need to be set in order to build the classification trees: 

the number of attributes to be tested for the best split in the growing trees phase 

(Mtry), and the number of decision trees to be generated (Ntree). In this study, 

the parameters simulation were tested based on recent literature where the 

majority of the studies reported Ntree value to 500 and Mtry equals to the square 

root of the number of input variables (BELGIU; DRĂGUŢ, 2016). For the 

simulation procedure, Mtry was established into 2, 4 and 6 attributes per subset, 

and Ntree equals to 100, 500 and 1,000 (TABLE 8). 

 

Table 8 – Parameter simulation in the Random Forest classifier. 

Parameter Simulations 

Mtry 

Ntrees 

2 

100 

4 

100 

6 

100 

2 

500 

4 

500 

6 

500 

2 

1000 

4 

1000 

6 

1000 

Legend: Mtry = Number of attributes to be tested; Ntree = Number of decision trees 

to be generated. 

Source: Author (2018). 

 

3.3.3 Support Vector Machine  

 

Upgraded by Cortes and Vapnik (1995), the support vector machine 

(SVM) basically trains a group of objects to find a hyperplane that separates the 

dataset based on a predefined number of classes. The optimal hyperplane is set 

according to the decision boundary or support vectors that minimizes 

misclassifications (MOUNTRAKIS; IM; OGOLE, 2011). 

The nu-SVC classifier, implemented in LIBSVM (CHANG; LIN, 2011), 

was used in the study. This classifier fit a support vector machine based on a nu 
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parameter which has the same function of C cost of general models but ranging 

from zero to one. C is the parameter related to soft margin cost function which 

controls the influence of each individual support vector and is related to the ratio 

of support vectors and the ratio of the training error. 

In a complex space of features, a kernel function is applied to SVM in 

order to transform the attributes and then covert the non-linear space into a 

linear space. According to Mountrakis, Im and Ogole (2011), the kernel choice 

is the major challenge concerning the applicability of SVM, so in this study 

three kernel functions were computed in the dataset: polynomial (EQUATION 

9), radial based (EQUATION 10) and sigmoidal (EQUATION 11).  

 

 polynomial(xi,xj)   (-  * xi * xj + coef   )
d
                                                       ( ) 

 

 radial(xi,xj)   e-  * ‖xi - xi‖
2
                                                                                (10) 

 

 sigmoidal(xi,xj)   tanh(-  * xi * xj + coef   )                                                  (11)  

 

Where the parameters γ, d, and nu must be set by the user. In this study, 

a short parameter simulation was taken in order to evaluate and choose the best 

model (TABLE 9). The designation of an advanced selection was not considered 

because the three parameters can be quickly evaluated by a short number of 

tests. 
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Table 9 – Parameter simulation by different kernel functions. 

Parameter Simulations 

  

nu 

d* 

0.1 

0.01 

1 

0.5 

0.01 

1 

1.0 

0.01 

1 

0.1 

0.1 

1 

0.5 

0.1 

1 

1.0 

0.1 

1 

0.1 

0.5 

1 

0.5 

0.5 

1 

1.0 

0.5 

1 

  

nu 

d* 

0.1 

0.01 

2 

0.5 

0.01 

2 

1.0 

0.01 

2 

0.1 

0.1 

2 

0.5 

0.1 

2 

1.0 

0.1 

2 

0.1 

0.5 

2 

0.5 

0.5 

2 

1.0 

0.5 

2 

  

nu 

d* 

0.1 

0.01 

3 

0.5 

0.01 

3 

1.0 

0.01 

3 

0.1 

0.1 

3 

0.5 

0.1 

3 

1.0 

0.1 

3 

0.1 

0.5 

3 

0.5 

0.5 

3 

1.0 

0.5 

3 

Legend:   = Gamma parameter of kernel functions; nu = parameter which has the 

same function of C cost of general models but ranging from zero to one; d = degree 

parameter (only simulated to polynomial kernel function). 

Source: Author (2018). 

 

3.4 Accuracy analysis 

 

Whatever the procedure that generates a map is (change map, land cover 

map, etc.), its accuracy must be known. Among a set of reasons to assess the 

accuracy of a map, the need to improve the map quality and the possibility to 

compare techniques or algorithms are very important (CONGALTON; GREEN, 

2009). 

The accuracy analysis was divided into two parts: (1) evaluation of the 

validation datasets based on the multiple fitted models, and (2) accuracy of the 

change maps based the final chosen model by each algorithm. 

The validation dataset was evaluated by the square root of the residual 

difference between the observed data and the predicted data, the root mean 
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squared error (EQUATION 12). For each machine learning algorithm, the error 

measure was computed for all simulations and the best model (lowest RMSE) 

was selected to test data input. Boxplot charts displayed the dataset variability in 

order to support the analysis.  

 

R  E   √
∑ (yj - ŷj)

2
 
j   1

 
                                                                                               (1 ) 

 

The second part of accuracy analysis consisted to compare the changed 

maps provided by the best model fit. The classified objects as change or no 

change in the test dataset were evaluated by high resolution imagery as Rapideye 

imagery and Google Earth/Bing platforms (when available). As in chapter one, 

burn events were unrepresentative in the sampling areas, so not included in the 

analysis. 

A confusion matrix was build and overall accuracy (EQUATION 13), 

user’s accuracy (inversely related to commission error) (EQUATION 14), 

producer’s accuracy (inversely related to omission error) (EQUATION 15), and 

Kappa index (EQUATION 16) were calculated. 

 

 verall accuracy   
∑ nii

k
i 1

n
                                                                               (13) 

User s accuracy   
nii

ni+
                                                                                       (14) 

Producer s accuracy  
nii

n+j
                                                                                 (15) 

    

∑ nii
k
i   1
n

 - 
∑ (ni+ * n+j)

k
i   1  

n2

1 - 
∑ (ni+ * n+j)

k
i   1  

n2

                                                                      (16) 
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Where, nii is the correct classified objects in the major diagonal by a k 

number of classes; n is the total of observations; ni+ is the total in line; and n+j is 

the total in column. 

 

The validation and test datasets were joined in order to create and 

visualize the change maps in the study area. 

 

3.5 Attribute evaluation 

 

For the three changed maps produced (ANN, RF and SVM), the 

attribute importance was computed by the analysis of RMSE variation when a 

particular spectral channel is removed from the training dataset, where an error 

increase leads to an importance increase for an attribute and vice versa. The 

difference between the general error and the attribute evaluation error ranked the 

importance of the fourteen attributes for a particular machine learning algorithm. 
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4 RESULTS AND DISCUSSION 

 

4.1 Model accuracies 

 

The error measures for the three machine learning algorithms 

simulations are registered in Table 10. The best parameter simulation for ANN 

classifier, which generates a RMSE of 0.3125 was the leaning rate set in 0.1, 

momentum in 0.9 and 10 hidden layers; for Random Forest, 2 attributes subset 

for 500 trees generated an error of 0.3296; and for SVM, a polynomial kernel 

function with gamma parameters set in 1.0, nu equal to 0.1, and degree equal to 

4 generated an error of 0.3005. 

Besides SVM had generated the lowest error among the MLA, Random 

Forest performed the lowest error variation among simulations followed by 

ANN, and SVM with outliers (FIGURE 17). Based on these parameters tests, 

RF was less sensitive and still returned good results. The support vector 

machines presented high error variability with outliers for the three kernel 

functions. 

 



78 

 

Figure 17 – Model simulation boxplots. 

 

Source: Author (2018). 

 

In order to reach low errors measures in the fit step, model parameters 

need to be comprehended. In RF and SVM radial kernel, the soft parameter 

simulation presented subtle error variations and provided good information to 

model choice, but advanced simulations involving more parameters and 

combinations are also appreciated with regards to improve change detection 

accuracies. 
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4.2 Change maps accuracies 

 

Based on the results of the validation phase, the performance of 

Artificial Neural Network (LR = 0.1; Mom = 0.9; HL = 10), Random Forest 

(Mtry = 2; Ntree = 500), and Support Vector Machine (  = 1.0; nu = 0.1; d = 3) 

on the test data resulted in the confusion matrixes in Figure 18. In general, ANN 

and RF methods showed high accuracies; follow by a moderate accuracy in 

SVM. 

Although Support Vector Machine had presented the lowest RMSE in 

model choice, the overall accuracy and kappa are the poorest among the 

algorithms, 80.0% and 0.60 respectively. Omission and commission errors were 

the most inferior as well, 28.0% and 20.0% respectively.  

Random Forest presented better general results with overall accuracy of 

92.0% and Kappa index of 0.84. It also showed a satisfactory commission error 

of 4.3%, best among the MLA, and an omission error of 12.0%. This low 

commission error is a good point in order to detect changes in the study area, 

which means the algorithm was almost not affected by the seasonal noise. 

As in Random Forest, the neural network showed satisfactory overall 

accuracy of 86% and kappa of 0.72. The omission error of 4.0% was the lowest 

among the others methods, but the highest commission error of 20.0%. 

The root mean squared error reached in the validation phase did not 

follow a rank pattern in the test phase. This divergence might be related to 

dataset dependence, once the test and validation sets came from different regions 

of the study area. 

The change maps drawing the sampled objects used in the validation and 

test phases are presented in the Figure 19 to Figure 22, according to the 

sampling areas. 
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Figure 18 – Confusion matrixes and accuracy results for selected models. 

 

Source: Author (2018). 
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Figure 19 – Change map in the sampling area number one. 

 Source: Author (2018). 
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Figure 20 – Change map in the sampling area number two. 

 Source: Author (2018). 
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Figure 21 – Change map in the sampling area number three. 

 Source: Author (2018). 
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Figure 22 – Change map in the sampling area number four. 

 Source: Author (2018). 
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4.3 Importance of spectral channels 

 

The importance of each spectral channel related to RMSE are shown in 

Figure 23. SWIR2 and TCB emerged as two of the most important attributes 

when ANN and RF were considered. TCG was the most important attribute in 

Support Vector Machine and was also present in the top five for the others 

merhods. 

Artificial neural network demonstrated to be very sensitive to attribute 

permutation, which might be relate to the algorithm architecture. While SWIR2 

had an increase of 43% and NDVI a decrease of 6% of the RMSE in neural 

network, Random Forest and Support Vector Machine had a RMSE increase of 

6% and 5% and a decrease of 3% and 0.3% respectively. This less sensitivity by 

these algorithms may assurance a good point in order to reach high accuracy in 

change detection.  

Some attributes presented divergences between methods as SWIR2 

being the most important attribute for ANN and the worse one for SVM; also 

TCB important in ANN and RF, and almost irrelevant in SVM. These 

differences bring attention to the use of certain attributes and algorithms in 

univariate change detection studies, which can generate poor accuracies. 
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Figure 23 – Spectral channels importance for individual MLA. 

Source: Author (2018). 
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4.4 Method limitations 

 

Some limitations to the method used in this chapter are discussed in this 

section as sampling considerations, timing of changes, appliance in large 

datasets, and extend knowledge in machine learning algorithms. DeVries et al. 

(2016) also reported some of these limitations but focused on uncertainties in 

local expert data. 

The data used to evaluate the machine learning was sample at the area in 

order to reduce computational and operational efforts. Heterogeneous landscapes 

in terms of vegetation gradients must be stratified in order to reduce mixed 

information once large areas can provide change uncertainties. 

The timing of change is an important feature of forest monitoring. Even 

though the multidate segmentation procedure has the temporal information and 

detects the changes with high accuracy in time, it did not track the change timing 

for a particular image-object. This limitation is a crucial point in order to give 

continuity and consistency to the method in detection and monitoring studies. 

The use of a large set of images in order to create time series can be a 

storage problem in monitoring studies but as discussed in this study, large sets 

can be reduced once small variations of the number of images may not affect the 

detection of changed areas. Nevertheless, as discussed in Chapter 1 section 4.3, 

the expansion of the temporal series increases temporal and spectral information 

in the segmentation process and might make the multidate segmentation difficult 

to be explored by creating small objects. Also, a large amount of temporal (long 

time series), spectral (multiple bands) and spatial information (large areas) can 

take an extensive computational effort when these  data is processed are the 

segmentation procedure. 

In this study, machine learning algorithms were run in Weka 3.8 

software with a few simulations and all others parameters set by the software 
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default. Extended knowledge on these algorithms can fit alternative architectures 

and provide better results for change detection. 

These limitations must be more explored in savanna regions, since the 

challenge of detect change is recognized in these areas. 
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5 CONCLUSION  

 

This chapter compared the performance of Landsat OLI spectral 

channels and spectral indices in Cerrado change detection using machine 

learning algorithms, and evaluated the importance of these channels. 

The three algorithms presented satisfactory performances to discriminate 

human-induced change events from seasonal noise but Random Forest 

demonstrated the best results in the test phase with high overall accuracy. It also 

presented low error variation in the parameter simulation.  

Spectral channels as shortwave infrared and tasseled cap greenness 

indicated positive influence in the change detection. The attribute ranking does 

not bring to univariate studies since the complexity of the Cerrado biome, but it 

may support options to create spectral subsets to eventual studies. 

Future researches can also follow-up this approach by exploring 

different databases such as Sentinel imagery, and looking forward some 

limitation issues as the sampling factor, timing of changes, extended knowledge 

in machine learning, and the manipulation of massive sets of spatial (extensive 

areas) or spectral data (long time series). 
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